高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直流蒸汽发生器蒸干点波动引起的热应力及疲劳分析

陈玲 王鑫铭 张永发 张黎明 蒋立志 焦猛 刘小丫

陈玲, 王鑫铭, 张永发, 张黎明, 蒋立志, 焦猛, 刘小丫. 直流蒸汽发生器蒸干点波动引起的热应力及疲劳分析[J]. 核动力工程, 2023, 44(4): 121-127. doi: 10.13832/j.jnpe.2023.04.0121
引用本文: 陈玲, 王鑫铭, 张永发, 张黎明, 蒋立志, 焦猛, 刘小丫. 直流蒸汽发生器蒸干点波动引起的热应力及疲劳分析[J]. 核动力工程, 2023, 44(4): 121-127. doi: 10.13832/j.jnpe.2023.04.0121
Chen Ling, Wang Xinming, Zhang Yongfa, Zhang Liming, Jiang Lizhi, Jiao Meng, Liu Xiaoya. Analysis of Thermal Stress and Fatigue Induced by Dryout Oscillation in Once Through Steam Generator[J]. Nuclear Power Engineering, 2023, 44(4): 121-127. doi: 10.13832/j.jnpe.2023.04.0121
Citation: Chen Ling, Wang Xinming, Zhang Yongfa, Zhang Liming, Jiang Lizhi, Jiao Meng, Liu Xiaoya. Analysis of Thermal Stress and Fatigue Induced by Dryout Oscillation in Once Through Steam Generator[J]. Nuclear Power Engineering, 2023, 44(4): 121-127. doi: 10.13832/j.jnpe.2023.04.0121

直流蒸汽发生器蒸干点波动引起的热应力及疲劳分析

doi: 10.13832/j.jnpe.2023.04.0121
详细信息
    作者简介:

    陈 玲(1977—),男,教授,现主要从事舰船核动力工程研究,E-mail: goodcl@126.com

    通讯作者:

    张永发,E-mail: 1229909792@qq.com

  • 中图分类号: TL334

Analysis of Thermal Stress and Fatigue Induced by Dryout Oscillation in Once Through Steam Generator

  • 摘要: 为研究蒸干点波动对蒸汽发生器传热管造成的损伤,以Babcock&Wilcox公司设计的直流蒸汽发生器为原型,首先利用一、二次侧耦合传热的方法得到相关热工水力参数,通过对比不同波动频率下蒸干点径向温度分布确定波动频率的影响,利用有限元分析得到传热管应力分布,最后根据S-N曲线对传热管进行疲劳评估,并探讨相关因素的影响。研究结果表明,蒸干点波动频率较低时径向温度分布与稳态相似,接触二次侧的传热管外壁面更容易发生疲劳损坏,虽然交变应力小于限值,但在堆内环境下存在一定运行隐患,温度波动幅值增大会导致传热管寿命明显下降,采用弹性约束有利于缓解蒸干点波动引起的疲劳。本研究为直流蒸汽发生器传热管在蒸干点波动条件下的寿命预测及安全运行提供了参考。

     

  • 图  1  单元管示意图

    Figure  1.  Schematic Diagram of Unit Tube

    图  2  数值模型验证

    Figure  2.  Verification of Numerical Model

    图  3  网格无关性检验

    Figure  3.  Mesh-independent Results

    图  4  轴向温度分布

    Figure  4.  Distribution of Axial Temperature

    图  5  轴向体积含汽率分布

    Figure  5.  Distribution of Axial Volume Fraction

    图  6  径向温度波动

    Figure  6.  Distribution of Radial Temperature

    图  7  轴向总应力分布

    Figure  7.  Distribution of Total Axial Stress

    图  8  径向应力分布

    Figure  8.  Distribution of Radial Stress

    图  9  瞬态总应力波动

    Figure  9.  Transient Total Stress Fluctuation

    图  10  径向交变应力分布

    Figure  10.  Distribution of Radial Alternating Stress

    图  11  不同温度波动幅值下的交变应力分布

    Figure  11.  Distribution of Alternating Stress under Different Temperature Fluctuation

    图  12  不同基础刚度下交变应力分布

    Figure  12.  Distribution of Alternating Stress under Different Foundation Stiffness

    表  1  单元管几何参数

    Table  1.   Geometric Parameters of Unit Tube

    参数名参数值
    管外径/mm15.875
    壁厚/mm0.864
    管节距/mm22.225
    高度/m9.3
    下载: 导出CSV

    表  2  模型类型

    Table  2.   Model Types

    交换形式力模型系数模型
    动量交换曳力Universal
    升力Moraga
    壁面润滑力Hosokawa
    湍流耗散力Lopez-de-Bertodano
    能量交换Ranz-Marshall
    下载: 导出CSV

    表  3  边界条件

    Table  3.   Boundary Conditions

    计算域边界参数名参数值
    一次侧进口质量流速/[kg·(m2·s)−1]2692.52
    温度/K590.85
    出口压力/MPa15.17
    二次侧进口质量流速/[kg·(m2·s)−1]190.19
    温度/K510.95
    出口压力/MPa6.38
      其他边界为对称面
    下载: 导出CSV
  • [1] LIU H T, KAKAC S, MAYINGER F. Characteristics of transition boiling and thermal oscillation in an upflow convective boiling system[J]. Experimental Thermal and Fluid Science, 1994, 8(3): 195-205. doi: 10.1016/0894-1777(94)90048-5
    [2] DONG X M, ZHANG Z J, LIU D, et al. Numerical investigation of the effect of grids and turbulence models on critical heat flux in a vertical pipe[J]. Frontiers in Energy Research, 2018, 6: 58. doi: 10.3389/fenrg.2018.00058
    [3] DONG X M, DUARTE J P, LIU D, et al. Numerical investigation of azimuthal heat conduction effects on CHF phenomenon in rod bundle channel[J]. Annals of Nuclear Energy, 2018, 121: 203-209. doi: 10.1016/j.anucene.2018.07.033
    [4] WANG M J, WANG Y J, TIAN W X, et al. Recent progress of CFD applications in PWR thermal hydraulics study and future directions[J]. Annals of Nuclear Energy, 2021, 150: 107836. doi: 10.1016/j.anucene.2020.107836
    [5] ZENG C J, WANG M J, WU G, et al. Numerical study on the enhanced heat transfer characteristics of steam generator with axial economizer[J]. International Journal of Thermal Sciences, 2022, 182: 107794. doi: 10.1016/j.ijthermalsci.2022.107794
    [6] HE S P, WANG M J, TIAN W X, et al. Development of an OpenFOAM solver for numerical simulations of shell-and-tube heat exchangers based on porous media model[J]. Applied Thermal Engineering, 2022, 210: 118389. doi: 10.1016/j.applthermaleng.2022.118389
    [7] 史建新. 直管式直流蒸汽发生器蒸干及蒸干后传热数值模拟[D]. 哈尔滨: 哈尔滨工程大学, 2019.
    [8] 肖军,武学素,庄贺庆,等. 快堆蒸汽发生器沸腾传热恶化引起的热应力计算和分析[J]. 核动力工程,1992, 13(3): 63-68.
    [9] 刘萌萌,张震,杨星团,等. 蒸汽发生器传热管密度波振荡现象研究[J]. 核动力工程,2021, 42(1): 8-14.
    [10] KWON J S, KIM D H, SHIN S G, et al. Assessment of thermal fatigue induced by dryout front oscillation in printed circuit steam generator[J]. Nuclear Engineering and Technology, 2022, 54(3): 1085-1097. doi: 10.1016/j.net.2021.09.004
    [11] 张蕊,田文喜,秋穗正,等. 基于CFD方法的棒束通道内临界热流密度预测[J]. 原子能科学技术,2018, 52(5): 782-787. doi: 10.7538/yzk.2018.52.05.0782
    [12] 董晓朦. 棒束通道沸腾传热与两相流动CFD分析及应用[D]. 哈尔滨: 哈尔滨工程大学, 2019.
    [13] BECKER K M, LING C H, HEDBERG S, et al. Experimental investigation of post dryout heat transfer: KTH-NEL-33.[R]. Stockholm: Royal Institute of Technology, 1983.
    [14] SINGH S, DHIR V K. Scaling of the thermal oscillations in the tubes of once through steam generators[C]//ASME. HTD (American Society of Mechanical Engineers. Heat Transfer Div. ). New York: American Society of Mechanical Engineers, 1983, 27: 63-73.
    [15] CHIANG T, FRANCE D M, BUMP T R. Calculation of tube degradation induced by dryout instability in sodium-heated steam generators[J]. Nuclear Engineering and Design, 1977, 41(2): 181-191. doi: 10.1016/0029-5493(77)90108-X
    [16] ZHANG Y, LU T. Study of the quantitative assessment method for high-cycle thermal fatigue of a T-pipe under turbulent fluid mixing based on the coupled CFD-FEM method and the rainflow counting method[J]. Nuclear Engineering and Design, 2016, 309: 175-196. doi: 10.1016/j.nucengdes.2016.09.021
    [17] CHOPRA O K, STEVENS G L, TREGONING R, et al. Effect of light water reactor water environments on the fatigue life of reactor materials[J]. Journal of Pressure Vessel Technology, 2017, 139(6): 060801. doi: 10.1115/1.4035885
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  22
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-16
  • 修回日期:  2023-02-21
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回