Probabilistic Safety Analysis Framework for Internal Events of Aqueous Homogeneous Reactor
-
摘要: 液体燃料反应堆(简称溶液堆)与传统固体燃料反应堆在安全设计和运行特性等方面存在重大差异,无法仅按照现有以确定论为核心的设计方法进行安全设计,必须在设计之初引入概率安全分析(PSA)技术。由于燃料形态、安全屏障及缓解系统等与固体燃料反应堆的差异,传统以堆芯损坏为核心的反应堆PSA技术无法直接适用于溶液堆。在调研国内外传统研究堆、溶液堆及乏燃料后处理厂相关要求及分析技术后,以我国正在研发的医用同位素试验堆为对象,提出了溶液堆PSA安全目标,并建立了PSA技术框架,为该类型反应堆PSA的开展和安全审查奠定基础。Abstract: There are significant differences in the safety design and operation characteristics between liquid fuel reactor (aqueous homogeneous reactor) and traditional solid fuel reactor, therefore, it is impossible to carry out the safety design of aqueous homogeneous reactor only using the existing safety design methods based on deterministic theories, and probabilistic safety analysis (PSA) technique must be adopted at the beginning of the design period. Due to the differences in fuel forms, safety barriers and mitigation systems, the traditional PSA technique for reactor, which is based on the core damage, cannot be directly applied to aqueous homogeneous reactors. After investigating the requirements and analysis of traditional research reactors, aqueous homogeneous reactors and spent fuel reprocessing facilities at home and abroad, taking the medical isotope test reactor being developed in China as the object, the PSA safety objectives of aqueous homogeneous reactor is put forward, and the PSA technical framework is established, which lays the foundation for the PSA development and safety review of this type of reactor.
-
表 1 典型固体燃料反应堆PSA结果
Table 1. PSA Results for Typical Reactors with Solid Fuel
类型 反应堆 CDF点估计值/(堆·年)−1 中等功率研究堆 绵阳研究堆 1.22×10−7 低功率研究堆(脉冲) 德黑兰研究堆TRR 3.94×10−6 低功率研究堆(2 MW) 西安脉冲堆XAPR 4.14×10−6 商用电厂 AP1000 2.41×10−7 -
[1] 梁俊福,何千舸,刘学刚,等. 溶液堆的应用及其核燃料处理[J]. 核化学与放射化学,2009, 31(1): 3-9. [2] 史永谦,林生活,姚世贵,等. 铀溶液核临界安全实验装置[J]. 核动力工程,2002, 23(3): 72-75,102. [3] 国家核安全局. 研究堆设计安全规定: HAF201[S]. 北京: 中国法制出版社, 1995: 3. [4] IAEA. Safety of research reactors: SSR-3[R]. Vienna: IAEA, 2017. [5] U. S. Nuclear Regulatory Commission. Guidance for a technology-inclusive, risk-informed, and performance-based methodology to inform the licensing basis and content of applications for licenses, certifications, and approvals for non-light-water reactors: Regulatory Guide 1.233[R]. Washington, D.C: US NRC, 2020. [6] 刘金林. 高通量工程试验堆概率安全分析[D]. 合肥: 中国科学技术大学, 2016. [7] 余恒. CMRR堆额定功率工况下内部事件一级概率安全分析[D]. 绵阳: 中国工程物理研究院, 2019. [8] 王宝生,沈志远,唐秀欢,等. 西安脉冲堆满功率运行工况内部始发事件一级概率安全评价[J]. 原子能科学技术,2017, 51(9): 1617-1624. [9] 依岩,种毅敏. 高温气冷堆概率安全分析(PSA)报告审评的思考[J]. 核安全,2011(1): 31-35. doi: 10.3969/j.issn.1672-5360.2011.01.005 [10] 杨红义. 中国实验快堆设计阶段内部事件一级概率安全评价[D]. 北京: 中国原子能科学研究院, 2004. [11] 吴中旺,奚树人. 后处理厂与核电厂概率安全评价方法学的比较[J]. 清华大学学报:自然科学版,2000, 40(12): 1-3. [12] U. S. NRC. Guidelines for preparing and reviewing applications for the licensing of non-power reactors: format and content for licensing radioisotope production facilities and aqueous homogeneous reactors: FINAL Interim Staff Guidance Augmenting NUREG-1537, Part 1[R]. Washington, D.C: U. S. NRC, 2012 [13] DEXTER A H, PERKINS W C. Component failure-rate data with potential applicability to a nuclear fuel reprocessing plant: DP-1633[R]. Aiken: Du Pont de Nemours (E. I. ) and Co. , 1982. [14] DANG V N. Safety analysis for the licensing of molten salt reactors[D]. Villigen: Paul Scherer Institute, 2016.