Research on Cascade Control Method of Electric Power of NUSTER-100
-
摘要: 热管冷却反应堆(简称热管堆)采用固态堆设计理念,通过热管非能动方式导出堆芯热量,具有结构简单紧凑、安全性高、噪音低、工作时间长的优势。本文以100 kW静默式热管堆(NUSTER-100)为研究对象,基于MATLAB/Simulink平台搭建了非线性动态模型,根据微扰理论获得了传递函数模型。基于动态特性分析,提出电功率串级控制方法,其中内环为核功率调节,外环为电功率控制。以反应性与核功率、核功率与电功率之间的传递函数为基础,设计了电功率串级控制系统,并采用增益调度解决其非线性问题。采用典型工况进行控制性能仿真验证,仿真结果表明,所设计的串级控制系统满足控制性能要求,可以实现反应堆的安全可靠运行。Abstract: The heat pipe cooled reactor (hereinafter referred to as heat pipe reactor) has the design concept of solid-state reactor, and the heat is passively transferred out of the core through heat pipes. It has the advantages of simple structure, high safety, low noise, compact structure and long working time. In this paper, a 100 kW silent heat pipe reactor (NUSTER-100) is taken as the research object, and the nonlinear dynamic model is built based on MATLAB/Simulink platform. The transfer function model is obtained by linearization based on perturbation theory. Based on the analysis of dynamic characteristics, a cascade control method of electric power is proposed, in which the inner loop is the core power regulation and the outer loop is the electric power control. Based on the transfer function between reactivity and nuclear power, and the transfer function between nuclear power and electric power, an electric power cascade control system is designed, and its nonlinear problem is solved by gain scheduling. The simulation results show that the cascade control system can meet the requirements of control performance and realize the safe and reliable operation of nuclear reactor.
-
Key words:
- Heat pipe cooled reactor /
- Cascade control /
- Transfer function /
- Dynamic model /
- Gain scheduling
-
图 2 三段式热电转化装置模块示意图[8]
Figure 2. Schematic Diagram of Three-stage Thermoelectric Conversion Unit Module
关键参数 数值 堆芯功率/kW 1000 燃料温度/K 1493 热管蒸发段温度/K 1085 热管冷凝段温度/K 985 电功率/kW 123 表 2 控制器参数
Table 2. Controller Parameters
功率水平 内环控制器 外环控制器 比例增益 比例增益 积分增益 100%FP 10−4 1.5 5.0×10−3 50%FP 2.0 9.0×10−3 25%FP 2.5 1.2×10−2 -
[1] GROVER G M, COTTER T P, ERICKSON G F. Erratum: structures of very high thermal conductance[J]. Journal of Applied Physics, 1964, 35(10): 3072. doi: 10.1063/1.1713185 [2] 余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8. doi: 10.13832/j.jnpe.2019.04.0001 [3] ZOHURI B. Heat pipe applications in fission driven nuclear power plants[M]. Cham: Springer, 2019: 117. [4] 钟睿诚,马誉高,邓坚,等. 热管堆多反馈效应下的启堆特性研究[J]. 核动力工程,2021, 42(S2): 104-108. doi: 10.13832/j.jnpe.2021.S2.0104 [5] 马誉高,杨小燕,刘余,等. MW级热管冷却反应堆反馈特性及启堆过程研究[J]. 原子能科学技术,2021, 55(S2): 213-220. [6] YAN B H, WANG C, LI L G. The technology of micro heat pipe cooled reactor: a review[J]. Annals of Nuclear Energy, 2020, 135: 106948. doi: 10.1016/j.anucene.2019.106948 [7] 孙浩沩,孙培伟. 基于热管冷却反应堆仿真系统的功率调节系统初步设计[J]. 仪器仪表用户,2022, 29(3): 83-87,105. doi: 10.3969/j.issn.1671-1041.2022.03.019 [8] TANG S M, LIU X, WANG C L, et al. Thermal-electrical coupling characteristic analysis of the heat pipe cooled reactor with static thermoelectric conversion[J]. Annals of Nuclear Energy, 2021, 168: 108870. [9] DU X N, TAO Y S, ZHENG Y Q, et al. Reactor core design of UPR-s: a nuclear reactor for silence thermoelectric system NUSTER[J]. Nuclear Engineering and Design, 2021, 383: 111404. doi: 10.1016/j.nucengdes.2021.111404 [10] 张建民, 孙培伟, 姜晶. 核反应堆控制[M]. 第二版. 北京: 中国原子能出版社, 2016: 62-63. [11] 杨世铭, 陶文铨. 传热学[M]. 第四版. 北京: 高等教育出版社, 2006: 52-54. [12] WANG C L, TANG S M, LIU X, et al. Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery[J]. Applied Thermal Engineering, 2020, 175: 115299. doi: 10.1016/j.applthermaleng.2020.115299 [13] 胡寿松. 自动控制原理[M]. 第四版. 北京: 科学出版社, 2001: 460.