Optimization of Feedwater Control for Casing Steam Generator Based on Apros
-
摘要: 针对套管式蒸汽发生器强耦合性造成的给水控制问题,以采用套管式蒸汽发生器的商用模块化小型反应堆汽水循环系统为研究对象,基于APROS软件建立汽水循环系统仿真模型。稳态仿真结果表明,仿真模型具有较高的仿真精度,满足仿真分析需求。通过升降负荷瞬态仿真试验,研究了套管式蒸汽发生器瞬态运行特性,研究结果表明,采用传统控制方案时,蒸汽流量和给水流量负荷跟随性较好,但蒸汽压力存在较大波动,且在功率由80%FP(FP为满功率)降至50%FP时会触发蒸汽排放。针对该问题提出了给水控制优化方案,仿真试验结果表明,优化后蒸汽压力波动范围明显降低,未触发蒸汽排放动作,系统安全性和稳定性得到了有效提升。Abstract: In allusion to the problem of water supply control caused by the strong coupling of casing steam generator, the steam-water circulation system of commercial modular small reactor with casing steam generator is taken as the research object, and the simulation model of steam-water circulation system is established based on the software APROS. The steady-state simulation results show that the simulation model has high simulation accuracy and meets the requirements of simulation analysis. Through the transient simulation test of power load increasing and decreasing, the transient operation characteristics of casing steam generator are studied. The research results show that steam and feedwater flows have good load following characteristics when the traditional control scheme is adopted, but relatively large steam pressure fluctuation can be observed, and the steam dump will be triggered when 80%FP drops to 50%FP. To solve this problem, an optimization scheme of feed water control is proposed. The simulation analysis results show that the fluctuation range of steam pressure is obviously reduced after optimization, and the steam dump action is not triggered, and the safety and stability of the system are effectively improved.
-
表 1 额定工况稳态仿真结果
Table 1. Steady State Simulation Results of Rated Operating Conditions
参数 仿真值 设计值 相对误差/% 蒸汽压力/MPa 4.49 4.50 −0.22 蒸汽流量/(t·h−1) 594.9 596.8 −0.32 蒸汽温度/℃ 293.1 293.8 −0.23 汽轮机功率/MW 126.9 127.5 −0.50 给水调节阀压差/ MPa 0.3 0.3 0 给水流量/(t·h−1) 594.9 596.8 −0.32 除氧器压力/MPa 0.348 0.350 −0.57 凝汽器压力/kPa 6.7 6.7 0 凝结水流量/(t·h−1) 497.6 499.0 −0.28 -
[1] 李程,余刃,余文敏,等. 基于强化学习的直流蒸汽发生器控制策略研究[J]. 舰船科学技术,2022, 44(11): 89-94. doi: 10.3404/j.issn.1672-7649.2022.11.019 [2] 吴鸽平,秋穗正,苏光辉,等. 套管直流蒸汽发生器流动不稳定性研究[J]. 原子能科学技术,2007, 41(3): 325-330. doi: 10.3969/j.issn.1000-6931.2007.03.014 [3] HAMEDANI A, NOORI-KALKHORAN O, AHANGARI R, et al. Evaluation of single heated channel and subchannel modeling of a nuclear once through steam generator (OTSG)[J]. Kerntechnik, 2020, 85(1): 54-67. doi: 10.3139/124.110993 [4] HASSAN Y A, MORGAN C D. Steady-state and transient prediction of a 19-tube once-through steam generator using RELAP5/MOD1[J]. Nuclear Technology, 1983, 60(1): 143-150. doi: 10.13182/NT83-A33110 [5] ZHU Y, XIANG C, WEI L, et al. SGTR analysis of SMR once-through steam generator[C]//2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers (ASME), 2022. [6] 田培妤,李毅,梁铁波,等. 基于APROS的核动力系统建模与仿真研究[J]. 核动力工程,2022, 43(4): 154-161. [7] 皇甫泽玉. 移动式动力装置热力系统建模与仿真[D]. 南京: 东南大学, 2020. [8] 赵孝,白宇飞,张震,等. 直流蒸汽发生器稳态与瞬态特性数值模拟[J]. 核动力工程,2020, 41(6): 8-13. doi: 10.13832/j.jnpe.2020.06.0008 [9] 童秋实. 直流蒸汽发生器模块精细化建模与仿真[D]. 哈尔滨: 哈尔滨工程大学, 2019. [10] 张伟,边信黔,夏国清. 套管式直流蒸汽发生器静态和动态特性的仿真研究[J]. 中国电机工程学报,2007, 27(5): 76-80. doi: 10.3321/j.issn:0258-8013.2007.05.015 [11] 付明玉,夏国清,常宗虎,等. 直流蒸汽发生器静态和动态特性分析[J]. 哈尔滨工程大学学报,2002, 23(3): 28-32. doi: 10.3969/j.issn.1006-7043.2002.03.008 [12] 刘丹,孙俊,孙玉良. HTR-PM直流蒸汽发生器的建模与分析[J]. 原子能科学技术,2016, 50(6): 995-1001. [13] 胡晓杰,杨婷,钱虹. 一体化反应堆直流蒸汽发生器控制策略研究[J]. 上海电力大学学报,2021, 37(2): 115-120. doi: 10.3969/j.issn.2096-8299.2021.02.003 [14] 刘妍. 一体化反应堆协调控制技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2013. [15] 赵刚,赵宇兰,刘金福. 套管式直流蒸汽发生器汽轮机一体化控制策略[J]. 节能技术,2020, 38(2): 162-166. doi: 10.3969/j.issn.1002-6339.2020.02.015 [16] 夏国清,艾明,张伟. 基于模糊神经网络的直流蒸汽发生器压力协调控制[J]. 核科学与工程,2010, 30(3): 266-271. [17] 付明玉,夏国清,陈德娟. 神经网络自学习模糊控制器在直流蒸汽发生器控制中的应用[J]. 船舶工程,2002(3): 43-47. doi: 10.3969/j.issn.1000-6982.2002.03.011 [18] 苏杰,夏国清,张伟. 直流蒸汽发生器的广义预测自校正控制仿真研究[J]. 核科学与工程,2007, 27(3): 224-229. doi: 10.3321/j.issn:0258-0918.2007.03.006 [19] 成守宇,李程,彭敏俊,等. 基于人工免疫的直流蒸汽发生器压力控制研究[J]. 核动力工程,2015, 36(3): 62-65. doi: 10.13832/j.jnpe.2015.03.0062