Research on Ultrasonic Technology of Accurate Measurement of Main Feedwater Flow in Nuclear Power Plant
-
摘要: 为实现压水堆核电机组的小幅功率提升,研制了一种用于二回路主给水流量测量的高精度超声波流量计,其设计测量不确定度达到0.3%。通过不确定度分解的方法,逐项分析流量测量在高温高压下受到的影响。高温带来的流态变化对测量的影响可以通过常温常压下和中温下对校准系数的实流标定进行部分验证;管体结构尺寸的变化可以通过有限元仿真与高温高压静态实验装置的测量得到;流量积分算法引入的误差通过计算流体动力学(CFD)技术仿真获得,并进行实流验证。结果表明,通过利用国内现有条件下的流量标准装置,采用不确定度分解的方法进行试验验证后,每一分量都可被量化溯源,进而可保证主给水流量测量不确定度指标,实现最终的设计目标。Abstract: A high-precision ultrasonic flow meter with a design measurement uncertainty of 0.3% has been investigated and developed for the measurement of the main feedwater flow in the secondary loop. This flowmeter could be used to realize the small power enhancement of PWR nuclear power units. The influences of flow measurement under high temperature and high pressure were sequentially analyzed through the method of uncertainty decomposition. The influence of the flow condition variation caused by high temperature on the measurement can be partially verified by the real flow calibration of the calibration coefficient under normal temperature and pressure and medium temperature. The change of the tube structure size could be obtained by finite element simulation and measurement on a static experimental equipment which could create a high temperature and high pressure environment. The error introduced by the flow integral algorithm could be obtained by CFD simulation and verified by real flow calibration. The results show that each component can be quantified and traced back by using the flow standard device under the existing domestic conditions. Therefore, the measurement uncertainty of the main feedwater flowmeter developed in this thesis can finally achieve the design target.
-
表 1 测量不确定度来源
Table 1. Sources of Measurement Uncertainty
测量不确定度来源 不确定度分量 密度 $ u(\rho ) $ 校准系数 u(K) 表体变形量(包括截面积、声道几何因子等) u(Kg) 流量积分方法 $ u(\omega ) $ 时间项 u(t) 表 2 以仿真结果为真值的两种积分算法误差
Table 2. Errors of Two Integral Algorithms with Simulation Results as True Values
流量/(t·h−1) 雷诺数 误差/% Gauss-Jacobi积分方法 本文积分方法 2500 1.846×107 0.0877 0.0220 2146 1.585×107 0.0873 0.0219 1750 1.292×107 0.0855 0.0212 1000 7.38×104 0.0779 0.0194 625 4.62×106 0.0716 0.0194 250 1.85×104 0.0593 0.0167 125 9.2×105 0.0587 0.0156 -
[1] 王旭,张赫男. 超声波技术在核电厂给水流量测量中的应用[J]. 机电工程,2012, 29(9): 1055-1060. [2] 居法立,陈远伦,陶佳林. 核电厂超声波流量计在主给水流量测量中的应用[J]. 中国核电,2014, 7(2): 118-123,112. [3] 向美琼,朱加良,刘艳阳,等. 华龙一号小幅功率提升研究[J]. 核动力工程,2021, 42(3): 115-120. [4] 余俊辉,关仲华,霍雨佳,等. 参数测量不确定度优化用于核电厂小幅功率提升的研究[J]. 核动力工程,2019, 40(3): 170-174. [5] 徐彦庆. 超声波流量计的实用测量技术[J]. 工业计量,2002(S1): 36-39. doi: 10.13228/j.boyuan.issn1002-1183.2002.s1.032 [6] American Society of Mechanical Engineers. Hydraulic turbines and pump-turbines performance test codes: ASME PTC 18-2011[S]. American Society of Mechanical Engineers, 2011: 43-52 [7] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 水轮机、蓄能泵和水泵水轮机流量的测量 超声传播时间法: GB/Z 35717-2017[S]. 北京: 中国标准出版社, 2017: 12-29. [8] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 封闭管道中流体流量的测量 渡越时间法液体超声流量计: GB/T 35138-2017[S]. 北京: 中国标准出版社, 2017: 12-29. [9] 胡鹤鸣,王池,孟涛. 多声路超声流量计积分方法及其准确度分析[J]. 仪器仪表学报,2010, 31(6): 1218-1223. [10] 国家质量监督检验检疫总局. 非实流法校准DN1000-DN15000液体超声流量计校准规范: JJF 1358-2012[S]. 北京: 中国标准出版社, 2012: 9-3. [11] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 封闭管道中流体流量的测量 气体超声流量计 第1部分: 贸易交接和分输计量用气体超声流量计: GB/T 34041.1-2017[S]. 北京: 中国标准出版社, 2017: 9-7. [12] WAGNER W, COOPER J R, DITTMANN A, et al. The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam[J]. Journal of Engineering for Gas Turbines and Power, 2000, 122(1): 150-184. doi: 10.1115/1.483186