Research on Automatic Calibration Algorithm of Reactor Fuel Rods
-
摘要: 由于核反应堆经常更换燃料棒,为保证反应堆的安全运行,需准确确定堆芯燃料棒的类别及其安装的位置。该校对算法先根据堆芯燃料棒安装位置的分布关系建立全局和局部虚拟二维坐标映射模型。识别时,拍摄各视点局部序列图,识别局部图中燃料棒的中心位置,并标定局部虚拟二维坐标映射模型,再利用燃料棒的中心位置与标定后的局部映射模型中的位置做欧氏距离判断,实现类别重构,进一步得到堆芯全景拼接图,以辅助校对。仿真研究表明,本算法可以有效检测燃料棒的类别及安装位置,识别率高于98%,准确率达到100%,全景拼接结果稳定可靠。在堆芯燃料棒的校对工作中具有较大的应用潜力。Abstract: Since the nuclear reactors need frequent replacement of fuel rods, it is necessary to determine the type and installation position of the core fuel rods accurately to ensure the safe operation of the reactor. Herein, the global and local virtual two-dimensional coordinate mapping models have been established in terms of the distribution relationship of fuel rod installation positions. The local sequence pictures of each viewpoint are taken to identify the central position of the fuel rods in the local pictures, and the local virtual two-dimensional coordinate mapping model is calibrated. Then, the Euclidean distance between the central position of the fuel rods and the position in the calibrated local mapping model is measured to realize type refactor, and the core panoramic mosaic is further obtained to assist calibration. The simulation results show that the algorithm can effectively detect the type and installation position of fuel rods, the recognition rate is higher than 98%, the accuracy rate reaches 100%, and the panoramic mosaic results are stable and reliable. It has great application potential in the calibration of core fuel rods.
-
Key words:
- Fuel rods /
- Multi-view /
- Feature matching /
- Registration /
- Deep learning
-
表 1 10组堆芯模拟体及堆芯现场局部图类别重构结果
Table 1. Type Refactor Results for 10 Sets of Core Simulators and Core Site Local Pictures
实验组号 燃料棒
总数单帧YOLO v5
类别重构本文方法 识别
率/%准确
率/%识别
率/%准确
率/%堆芯模拟体 1 257 99.4 99.2 99.4 100 2 245 99.6 99.4 99.4 3 257 99.6 99.2 99.8 4 99.2 98.2 99.8 5 98.2 99.2 98.4 堆芯现场 1 259 97.4 98.2 99.6 100 2 96.6 97.4 99.8 3 95.6 96.2 99.8 4 97.2 98.2 99.4 5 96.7 97.4 99.8 表 2 10组局部图全景拼接的RMSE
Table 2. RMSE for Panoramic Stitching of 10 Sets of Local Pictures
实验组号 RMSE/像素 中、下
局部拼接中、上
局部拼接中、左
局部拼接中、右
局部拼接堆芯模
拟体1 1.8 1.8 1.6 2.4 2 2.4 1.9 1.7 2.5 3 1.8 1.7 1.7 1.6 4 2.1 1.8 1.9 1.6 5 1.7 1.8 1.6 2.4 堆芯
现场1 2.1 2.3 1.8 2.4 2 2.0 1.9 1.8 1.8 3 1.6 1.6 1.6 1.7 4 1.9 1.9 2.3 1.6 5 1.6 1.9 1.8 1.9 -
[1] 余红星,李文杰,柴晓明,等. 数字反应堆发展与挑战[J]. 核动力工程,2020, 41(4): 1-7. doi: 10.13832/j.jnpe.2020.04.0001 [2] 李开宇,蔡琦,才鑫馨,等. 数字孪生技术在浮动核电站设计阶段中的应用研究[J]. 核动力工程,2022, 43(1): 197-201. [3] 高祖瑛,张作义,董玉杰. 核动力系统模拟技术的研究[J]. 核动力工程,1998, 19(2): 178-183. [4] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. [5] KE X, ZHANG X L, ZHANG T W, et al. SAR ship detection based on an improved faster R-CNN using deformable convolution[C]//Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels, Belgium: IEEE, 2021: 3565-3568. [6] LOWE D G. Distinctive image features from Scale-Invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94 [7] BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features[C]//Proceedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006: 404-417. [8] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011: 2564-2571. [9] 吕禾丰,陆华才. 基于YOLOv5算法的交通标志识别技术研究[J]. 电子测量与仪器学报,2021, 35(10): 137-144. [10] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996: 226-231. [11] MAHMUD M N, OSMAN M K, ISMAIL A P, et al. Road image segmentation using unmanned aerial vehicle images and DeepLab V3+ semantic segmentation model[C]//Proceedings of the 11th IEEE International Conference on Control System, Computing and Engineering. Penang, Malaysia: IEEE, 2021: 315-320. [12] JI Q B, WANG L J, HOU C B, et al. SAR and optical image matching eased on phase congruency and template matching[C]//Proceedings of the 8th International Conference on Dependable Systems and Their Applications. Yinchuan, China: IEEE, 2021: 315-320. [13] LIAO F R, CHEN Y, CHEN Y P, et al. SAR image registration based on optimized RANSAC algorithm with mixed feature extraction[C]//Proceedings of 2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa, USA: IEEE, 2020: 1153-1156. [14] ZARAGOZA J, CHIN T J, BROWN M S, et al. As-projective-as-possible image stitching with moving DLT[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE, 2013: 2339-2346. [15] POURFARD M, HOSSEINIAN T, SAEIDI R, et al. KAZE-SAR: SAR image registration using KAZE detector and modified SURF descriptor for tackling speckle noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5207612. [16] LI Z F, CHEN C. An improved adaptive threshold BRISK feature matching algorithm based on SURF[C]//Proceedings of 2018 Chinese Automation Congress. Xi’an, China: IEEE, 2018: 2928-2932.