高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铅铋堆蒸汽发生器传热管破裂事故三维程序开发及验证

辜峙钘 余红星 黄代顺 严明宇 申亚欧 冯文培 龚政宇

辜峙钘, 余红星, 黄代顺, 严明宇, 申亚欧, 冯文培, 龚政宇. 铅铋堆蒸汽发生器传热管破裂事故三维程序开发及验证[J]. 核动力工程, 2023, 44(4): 226-233. doi: 10.13832/j.jnpe.2023.04.0226
引用本文: 辜峙钘, 余红星, 黄代顺, 严明宇, 申亚欧, 冯文培, 龚政宇. 铅铋堆蒸汽发生器传热管破裂事故三维程序开发及验证[J]. 核动力工程, 2023, 44(4): 226-233. doi: 10.13832/j.jnpe.2023.04.0226
Gu Zhixing, Yu Hongxing, Huang Daishun, Yan Mingyu, Shen Yaou, Feng Wenpei, Gong Zhengyu. Development and Verification of 3D Code for Steam Generator Tube Rupture Accident of LBE-cooled Reactor[J]. Nuclear Power Engineering, 2023, 44(4): 226-233. doi: 10.13832/j.jnpe.2023.04.0226
Citation: Gu Zhixing, Yu Hongxing, Huang Daishun, Yan Mingyu, Shen Yaou, Feng Wenpei, Gong Zhengyu. Development and Verification of 3D Code for Steam Generator Tube Rupture Accident of LBE-cooled Reactor[J]. Nuclear Power Engineering, 2023, 44(4): 226-233. doi: 10.13832/j.jnpe.2023.04.0226

铅铋堆蒸汽发生器传热管破裂事故三维程序开发及验证

doi: 10.13832/j.jnpe.2023.04.0226
基金项目: 国家重点研发计划项目(2019YFB1901300);国家自然科学基金项目(12005025);四川省自然科学基金项目(2022NSFSC0253,2022NSFSC1233)
详细信息
    作者简介:

    辜峙钘(1987—),男,副教授,博士后(在站),现从事反应堆热工流体与安全分析相关研究,E-mail: guzhixing17@163.com

    通讯作者:

    余红星,E-mail: hongxing_yu@126.com

  • 中图分类号: TL334

Development and Verification of 3D Code for Steam Generator Tube Rupture Accident of LBE-cooled Reactor

  • 摘要: 蒸汽发生器(SG)传热管破裂事故(SGTR)是铅铋堆设计必须重点考虑的安全问题之一。针对铅铋堆SGTR,为解决其复杂结构环境中压力波的三维传播与蒸汽的三维迁移难题,基于多相流欧拉流体动力学理论,开展了“铅铋-水”相互作用三维数值模型与算法研究,研制了专用程序,并采用实验对比和程序对比技术手段进行了程序验证,验证结果符合较好。研究结果表明:对于描述铅铋堆SGTR过程中“铅铋-水”相互作用行为,本文采用的相关数值理论与模型具有较好的适用性;对于研究复杂结构环境下铅铋堆SGTR的三维演化现象,包括压力波传播、蒸汽迁移,本文所开发的三维程序具有重要的潜在应用价值。本文研究成果有望为我国铅铋堆SGTR分析提供有力支撑。

     

  • 图  1  流型划分

    白色连续填充为气体,蓝色与灰色连续填充为液体(铅铋或水),白色圈为气泡,蓝色与灰色圈为液滴(铅铋或水)

    Figure  1.  Flow Pattern Division

    图  2  “水注铅铋”实验装置 单位:mm

    Figure  2.  Experimental Apparatus of Water Injection into LBE (mm)

    图  3  液体相对体积份额

    y—笛卡尔三维坐标系中的y坐标

    Figure  3.  Liquid Components Relative Volume Fraction

    图  4  LIFUS5/MOD2实验台架

    Figure  4.  LIFUS5/MOD2 Experimental Facility

    图  5  压力演化过程

    Figure  5.  Variation Process of Pressure

    图  6  空气内压力波传播三维传播过程

    Figure  6.  3D Process of Pressure Wave Propagation in Air

    图  7  单相水蒸汽内压力波传播过程

    Figure  7.  Process of Pressure Wave Propagation in Single-phase Water Steam

    图  8  激波管压力分布

    Figure  8.  Pressure Distribution in Shock Tube

    图  9  激波管速度分布

    Figure  9.  Velocity Distribution in Shock Tube

    图  10  激波管蒸汽体积份额分布

    Figure  10.  Volume Fraction Distribution in Shock Tube

  • [1] ALEMBERTI A, SMIRNOV V, SMITH C F, et al. Overview of lead-cooled fast reactor activities[J]. Progress in Nuclear Energy, 2014, 77: 300-307. doi: 10.1016/j.pnucene.2013.11.011
    [2] DIERCKS D R, SHACK W J, MUSCARA J. Overview of steam generator tube degradation and integrity issues[J]. Nuclear Engineering and Design, 1999, 194(1): 19-30. doi: 10.1016/S0029-5493(99)00167-3
    [3] CINOTTI L, SMITH C F, SEKIMOTO H, et al. Lead-cooled system design and challenges in the frame of Generation IV International Forum[J]. Journal of Nuclear Materials, 2011, 415(3): 245-253. doi: 10.1016/j.jnucmat.2011.04.042
    [4] WANG G. A review of research progress in heat exchanger tube rupture accident of heavy liquid metal cooled reactors[J]. Annals of Nuclear Energy, 2017, 109: 1-8. doi: 10.1016/j.anucene.2017.05.034
    [5] SMITH C F, CINOTTI L, SEKIMOTO H. Lead-cooled fast reactor (LFR) ongoing R&D and key issues: LLNL-CONF-414709[R]. Livermore, CA: Lawrence Livermore National Lab. , 2009.
    [6] DINH T N. Multiphase flow phenomena of steam generator tube rupture in a lead-cooled reactor system: a scoping analysis[C]//Proceedings of ICAPP. Nice. 2007.
    [7] SIBAMOTO Y, KUKITA Y, NAKAMURA H. Visualization and measurement of subcooled water jet injection into high-temperature melt by using high-frame-rate neutron radiography[J]. Nuclear Technology, 2002, 139(3): 205-220. doi: 10.13182/NT02-A3314
    [8] SIBAMOTO Y, KUKITA Y, NAKAMURA H. Small-scale experiment on subcooled water jet injection into molten alloy by using fluid temperature-phase coupled measurement and visualization[J]. Journal of Nuclear Science and Technology, 2007, 44(8): 1059-1069. doi: 10.1080/18811248.2007.9711347
    [9] CIAMPICHETTI A, AGOSTINI P, BENAMATI G, et al. LBE–water interaction in sub-critical reactors: First experimental and modelling results[J]. Journal of Nuclear Materials, 2008, 376(3): 418-423. doi: 10.1016/j.jnucmat.2008.02.039
    [10] PESETTI A, DEL NEVO A, FORGIONE N. Experimental investigation and SIMMER-III code modelling of LBE–water interaction in LIFUS5/Mod2 facility[J]. Nuclear Engineering and Design, 2015, 290: 119-126. doi: 10.1016/j.nucengdes.2014.11.016
    [11] CIAMPICHETTI A, BERNARDI D, CADIOU T, et al. LBE–water interaction in LIFUS 5 facility under different operating conditions[J]. Journal of Nuclear Materials, 2011, 415(3): 449-459. doi: 10.1016/j.jnucmat.2011.04.051
    [12] SA R, TAKAHASHI M, MORIYAMA K. Study on fragmentation behavior of liquid lead alloy droplet in water[J]. Progress in Nuclear Energy, 2011, 53(7): 895-901. doi: 10.1016/j.pnucene.2011.05.003
    [13] SA R, TAKAHASHI M. Experimental study on thermal interaction of ethanol jets in high temperature fluorinert[J]. Journal of Power and Energy Systems, 2012, 6(2): 314-323. doi: 10.1299/jpes.6.314
    [14] 黄望哩. 铅基堆SGTR事故下铅铋与水接触碎化行为研究[D]. 合肥: 中国科学技术大学, 2015.
    [15] ZHANG C D, SA R Y, ZHOU D N, et al. Effects of gas velocity and break size on steam penetration depth using gas jet into water similarity experiments[J]. Progress in Nuclear Energy, 2017, 98: 38-44. doi: 10.1016/j.pnucene.2017.02.006
    [16] WANG S, FLAD M, MASCHEK W, et al. Evaluation of a steam generator tube rupture accident in an accelerator driven system with lead cooling[J]. Progress in Nuclear Energy, 2008, 50(2-3): 363-369.
    [17] GU Z X, GANG W, BAI Y Q, et al. Preliminary investigation on the primary heat exchanger lower head rupture accident of forced circulation LBE-cooled fast reactor[J]. Annals of Nuclear Energy, 2015, 81: 84-90. doi: 10.1016/j.anucene.2015.03.018
    [18] 辜峙钘. 铅基研究实验堆无保护瞬态安全特性分析[D]. 合肥: 中国科学技术大学, 2017.
    [19] ZHANG C D, SA R Y, ZHOU D N, et al. Effects of failure location and pressure on the core voiding under SGTR accident in a LBE-cooled fast reactor[J]. International Journal of Heat and Mass Transfer, 2019, 141: 940-948. doi: 10.1016/j.ijheatmasstransfer.2019.06.106
    [20] 陈家铭. 铅冷快堆中换热器泄漏瞬态事故下气泡迁移行为研究[D]. 合肥: 中国科学技术大学, 2020.
    [21] 陈家铭,陈红丽. 自然循环铅冷快堆蒸汽发生器泄漏事故下的气泡迁移[J]. 原子能科学技术,2020, 54(12): 2344-2352. doi: 10.7538/yzk.2020.youxian.0004
    [22] HUANG X, CHEN B, YING Y, et al. Numerical investigation on LBE-water interaction for heavy liquid metal cooled fast reactors[J]. Nuclear Engineering and Design, 2020, 361: 110567. doi: 10.1016/j.nucengdes.2020.110567
    [23] YU Q F, ZHANG Y, WANG C L, et al. Numerical simulation of bubble transport during steam generator tube rupture accident of Lead-cooled Fast Reactor[J]. Annals of Nuclear Energy, 2021, 153: 108066. doi: 10.1016/j.anucene.2020.108066
    [24] 于启帆,赵亚峰,王成龙,等. 铅基快堆SGTR事故下热工水力模拟及气腔扩散行为研究[J]. 原子能科学技术,2022, 56(10): 2015-2023.
    [25] 辜峙钘, 余红星, 黄代顺, 等. 铅铋堆蒸汽发生器传热管破裂事故下铅铋-水相互作用程序开发及验证[J/OL]. 原子能科学技术, 2023: 1-10. (2023-04-21)[2023-05-21]. http: //kns.cnki.net/kcms/detail/11.2044.TL.20230421.0944.002.html.
  • 加载中
图(10)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  25
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-12
  • 修回日期:  2023-05-30
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回