Experimental Study on Prototype Melt under Severe Accident
-
摘要: 为研究严重事故条件下压力容器下封头熔融池分层行为,需将原型熔融物熔化为液态开展实验。本研究采用CESEF实验装置,使用电磁冷坩埚技术熔化原型熔融物,最高装料量为5000 g,最高温度为3000℃。配套的高频电源功率为400 kW,频率为100 kHz。针对华龙一号堆芯熔融物组分开展实验研究,研究发现熔融池出现了明显的分层,一层为金属层,一层为氧化层。通过对金属层和氧化层不同位置取样分析,发现金属层中主要为不锈钢成分、部分U和Zr,氧化层主要为亚氧化状态的U、Zr和O,其他含量很少。Abstract: In order to study the stratification morphology of the molten pool of the lower head of the pressure vessel under severe accident conditions, it is necessary to melt the prototype melt into liquid for experiments. In this study, CESEF experimental device is used, and the prototype melt is melted with the electromagnetic cold crucible technology. The maximum charge capacity is 5000 g, and the maximum temperature is 3000°C. The supporting high-frequency power supply is of 400 kW and a frequency of 100 kHz. An experimental study is carried out on the composition of Hualong One (HPR 1000) core melt, and it is found that the molten pool is divided into two layers: the metal layer and the oxide layer. By sampling different positions of the metal layer and oxide layer, it is found that the metal layer is mainly composed of stainless steel with some U and Zr, and the oxide layer is mainly composed of U, Zr and O in suboxide state, with few other contents.
-
Key words:
- CESEF experimental device /
- Prototype material /
- Molten pool
-
表 1 实验工况表
Table 1. Experimental Conditions
工况 $m_{{\rm{UO}}_2} $/g $m_{{\rm{ZrO}}_2} $/g mZr/g mSS/g RU/Zr Cn/% Xss/% 1 2300 233.16 402.5 155 1.36 30 5 2 2300 233.16 402.5 734 1.36 30 15 3 2300 233.16 402.5 1000 1.36 30 25 表 2 不同样品各元素含量 %
Table 2. Content of Various Elements in Different Samples
位置序号 U Zr O Fe Cr Ni 总量 1-1 19.97 25.68 53.71 0.24 0.23 0.18 100.01 1-2 19.81 23.16 55.81 0.65 0.18 0.38 99.99 1-3 21.94 22.49 54.11 1.21 0.17 0.08 100.00 1-4 14.16 22.18 27.55 27.99 4.49 3.63 100.00 2-1 21.09 13.47 64.93 0.01 0.26 0.24 100.00 2-2 4.71 13.51 14.75 48.94 11.54 6.55 100.00 3-1 19.74 14.89 65.38 0 0 0 100.01 3-2 21.47 16.40 61.37 0.16 0.04 0.56 100.00 3-3 5.41 7.31 20.29 49.12 11.35 6.52 100.00 -
[1] ASMOLOV V G, ASTAKHOVA Y V, DEGALTSEV Y G, et al. Study of carbon and separation effect on suboxidized corium stratification: Report MP-TR-2[R]. 2001 [2] ASMOLOV V G, ASTAHOVA Y V, YU V. VISHNEVSKIY, et al. Partitioning of fission products between the corium melt metallic and oxidic phases resulting from the STFM-FP tests: MP-TR-10[R]. Moscow, 2003. [3] TSURIKOV D F, VISHNEVSKIY V Y, DYAKOV E K, et al. Study of melt stratification and distribution of major species (U, Zr, O, Fe(SS)) between layers under oxidizing atmosphere: STFM-Ox Test Series” MASCA report, MP-TR-27, Russian research Centre “KURCHATOV INSTITUTE”[R]. Moscow, 2006 [4] KHABENSKI V B, BECHTA S V, KRUSHINOV E V, et al. Experiments MA-7 and MA-9: zirconium partitioning between Oxidic and metallic phases of molten corium: MP-TR-28[R]. 2006. [5] ASMOLOV V G, ABALIN S S, VESELKIN Y A, et al. RCW post-test analysis results: MP-TR-11[R]. 2003 [6] KANG K H, PARK R J, HONG S H, et al. An experimental study on layer inversion in the corium pool during a severe accident[J]. Nuclear Engineering and Design, 2014, 278: 163-170. doi: 10.1016/j.nucengdes.2014.07.005 [7] AN S M, SONG J H, KIM J Y, et al. Experimental investigation on molten pool representing corium composition at Fukushima Daiichi nuclear power plant[J]. Journal of Nuclear Materials, 2016, 478: 164-171. [8] SONG J, MIN B, HONG S, et al. An investigation on the physical and chemical behaviors of fuel debris during severe accident progression[J]. Progress in Nuclear Energy, 2018, 106: 345-356. doi: 10.1016/j.pnucene.2018.02.028