高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同注水方式下混合粒径碎片床冷却特性实验研究

杨生兴 宫厚军 方昱 黎阳 胡钰文 昝元锋 杨祖毛 卓文彬

杨生兴, 宫厚军, 方昱, 黎阳, 胡钰文, 昝元锋, 杨祖毛, 卓文彬. 不同注水方式下混合粒径碎片床冷却特性实验研究[J]. 核动力工程, 2023, 44(4): 247-252. doi: 10.13832/j.jnpe.2023.04.0247
引用本文: 杨生兴, 宫厚军, 方昱, 黎阳, 胡钰文, 昝元锋, 杨祖毛, 卓文彬. 不同注水方式下混合粒径碎片床冷却特性实验研究[J]. 核动力工程, 2023, 44(4): 247-252. doi: 10.13832/j.jnpe.2023.04.0247
Yang Shengxing, Gong Houjun, Fang Yu, Li Yang, Hu Yuwen, Zan Yuanfeng, Yang Zumao, Zhuo Wenbin. Experimental Study on Cooling Characteristics of Mixed Particle Size Debris Bed under Different Water Injection Methods[J]. Nuclear Power Engineering, 2023, 44(4): 247-252. doi: 10.13832/j.jnpe.2023.04.0247
Citation: Yang Shengxing, Gong Houjun, Fang Yu, Li Yang, Hu Yuwen, Zan Yuanfeng, Yang Zumao, Zhuo Wenbin. Experimental Study on Cooling Characteristics of Mixed Particle Size Debris Bed under Different Water Injection Methods[J]. Nuclear Power Engineering, 2023, 44(4): 247-252. doi: 10.13832/j.jnpe.2023.04.0247

不同注水方式下混合粒径碎片床冷却特性实验研究

doi: 10.13832/j.jnpe.2023.04.0247
详细信息
    作者简介:

    杨生兴(1991—),男,助理研究员,现主要从事反应堆热工水力与安全传热研究,E-mail: yang_sheng_xing@163.com

    通讯作者:

    宫厚军,E-mail: ghjtsing@126.com

  • 中图分类号: TL334

Experimental Study on Cooling Characteristics of Mixed Particle Size Debris Bed under Different Water Injection Methods

  • 摘要: 液态堆芯熔融物与冷却剂相互作用(FCI)后破碎形成颗粒床,对颗粒床实施有效的冷却可以实现熔融物的滞留并终止事故进程。本文基于原型熔融物FCI实验后的碎片粒径分布和孔隙率,构建了带内热源的混合粒径砂石碎片床,对不同碎片床强化排热措施(顶部淹没水池、自然循环驱动底部注水、周向进水)下的干涸特性进行了研究,实验中发现:顶部淹没水池条件下,碎片床的中上部率先出现汽泡壅塞区,随后在碎片床中下部出现缺液干涸区;自然循环驱动底部注水条件下,极大改善了碎片床底部的缺液状态,干涸热流密度(DHF)提升2.5倍以上,干涸区域位于碎片床中上部;周向进水方式下,DHF也提升2.5倍以上。

     

  • 图  1  实验系统回路

    Figure  1.  Experimental System Circuit

    图  2  电加热元件和光纤测温点分布

    Figure  2.  Distribution of Temperature Measuring Points of Heating Element and Optical Fiber

    图  3  工况7中的汽泡壅塞区和缺液干涸区温度变化

    Figure  3.  Temperature Changes for Bubble Choked Area and Liquid Dryout Area in Condition 7

    图  4  工况7干涸区域的轴向和径向位置

    Figure  4.  Axial and Radial Positions of Dryout Area in Condition 7        

    图  5  工况4干涸区域的轴向和径向位置

    Figure  5.  Axial and Radial Positions of Dryout Area in Condition 4        

    图  6  工况14干涸区域的轴向和径向位置

    Figure  6.  Axial and Radial Positions of Dryout Area in Condition 14

    图  7  周向进水方式

    Figure  7.  Circumferential Water Intake Mode

    表  1  DBC实验主要干涸实验工况与结果

    Table  1.   Main Dryout Experienment Conditions and Results for DBC Experienment

    实验工况编号碎片床结构进水方式碎片床高度/m水池高度/m系统压力/MPa干涸时加热功率/kW干涸区域位置干涸热流密度/(kW·m−2)
    1均匀床顶部淹没1.00.60.1467.9Tf5、Tf6、Tf4、Tf3667.075
    4均匀床顶部淹没1.01.00.386.5Tf4849.809
    7均匀床顶部淹没1.00.61.0124.5Tf5、Tf4、Tf31223.14
    10均匀床顶部淹没1.00.60.273.3Tf7、Tf5、Tf6720.127
    13均匀床双下降管1.01.00.18129.5Tf15、Tf141272.26
    14均匀床双下降管1.01.00.3165.2Tf15、Tf141622.99
    16均匀床单下降管1.01.00.2>185.6(未烧干涸)>1823.4
    30均匀床周向进水1.01.00.2>189.5(未烧干涸)>1823.4
      Tf—分布式光纤测温传感器轴向的测温点标号;“—"—没有干涸区域
    下载: 导出CSV
  • [1] REINKE N, DRATH T, BERLEPSCH T V, et al. Formation, characterisation and cooling of debris: scenario discussion with emphasis on TMI-2[J]. Nuclear Engineering and Design, 2006, 236(19-21): 1955-1964. doi: 10.1016/j.nucengdes.2006.03.029
    [2] SCHÄFER P, GROLL M, KULENOVIC R. Basic investigations on debris cooling[J]. Nuclear Engineering and Design, 2006, 236(19-21): 2104-2116. doi: 10.1016/j.nucengdes.2006.03.033
    [3] KULKARNI P P, RASHID M, KULENOVIC R, et al. Experimental investigation of coolability behaviour of irregularly shaped particulate debris bed[J]. Nuclear Engineering and Design, 2010, 240(10): 3067-3077. doi: 10.1016/j.nucengdes.2010.05.020
    [4] LI L X, MA W M, THAKRE S. An experimental study on pressure drop and dryout heat flux of two-phase flow in packed beds of multi-sized and irregular particles[J]. Nuclear Engineering and Design, 2012, 242: 369-378. doi: 10.1016/j.nucengdes.2011.11.006
    [5] LI L X, ZOU X M, WANG H S, et al. Investigations on two-phase flow resistances and its model modifications in a packed bed[J]. International Journal of Multiphase Flow, 2018, 101: 24-34. doi: 10.1016/j.ijmultiphaseflow.2017.12.012
    [6] TAKASUO E, HOLMSTRÖM S, KINNUNEN T, et al. The effect of lateral flooding on the coolability of irregular core debris beds[J]. Nuclear Engineering and Design, 2011, 241(4): 1196-1205. doi: 10.1016/j.nucengdes.2010.04.033
    [7] TAKASUO E. An experimental study of the coolability of debris beds with geometry variations[J]. Annals of Nuclear Energy, 2016, 92: 251-261. doi: 10.1016/j.anucene.2016.01.030
    [8] TAKASUO E, HOLMSTRÖM S, KINNUNEN T, et al. The COOLOCE experiments investigating the dryout power in debris beds of heap-like and cylindrical geometries[J]. Nuclear Engineering and Design, 2012, 250: 687-700. doi: 10.1016/j.nucengdes.2012.06.015
    [9] MAGALLON D, HOHMANN H. Experimental investigation of 150-kg-scale corium melt jet quenching in water[J]. Nuclear Engineering and Design, 1997, 177(1-3): 321-337. doi: 10.1016/S0029-5493(97)00201-X
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  412
  • HTML全文浏览量:  53
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-08
  • 修回日期:  2023-02-28
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回