Experimental Research on Mechanism of Aerosol Re-entrainment Behavior in Containment under Severe Accident Condition
-
摘要: 基于气溶胶再悬浮和再夹带整体试验平台,针对非能动安全壳内的气溶胶再夹带行为开展了试验研究。通过测量颗粒物的质量浓度、数量浓度以及粒径分布,分析了在再夹带阶段试验容器内气溶胶的运动和分布。通过改变水池尺寸、水池表面张力、颗粒物材质和浓度来研究不同单位面积上水蒸气的蒸发速率、不同水池表面张力、不同颗粒物溶解度及浓度下的气溶胶再夹带率的变化。试验表明:水池沸腾情况下气溶胶再夹带率受水池表面张力和单位面积上水蒸气蒸发速率影响,颗粒物粒径分布与颗粒物材质有关。Abstract: Based on the Integral test facility of aerosol re-suspension and re-entrainment, the experimental study on aerosol re-entrainment behavior in passive containment was carried out. By measuring the mass concentration, quantity concentration and particle size distribution of particulate matter, the motion and distribution of aerosol in the test vessel during the re-entrainment stage were analyzed. By changing the pool size, pool surface tension, particle material and concentration, the change of aerosol re-entrainment rate under different water vapor evaporation rate on unit area, different pool surface tension, different particle solubility and concentration was studied. The results show that, during the pool boiling, the re-entrainment rate of aerosol is affected by the surface tension and water vapor evaporation rate on unit area, and the particle size distribution is related to the particle material.he concentration of particulate matter solubility. The results show that, during the pool boiling, the re-entrainment rate of aerosol is affected by the surface tension and water vapor evaporation rate on unit area, and the particle size distribution is related to the particle material.
-
Key words:
- Severe accident /
- Aerosol /
- Re-entrainment /
- Experimental study
-
表 1 气溶胶再夹带机理试验工况参数表
Table 1. Condition Parameters of Aerosol Re-entrainment Mechanism Test
编号 水池表面积/m2 颗粒物材质 溶液中颗粒物质量浓度/(g·L−1) 蒸汽蒸发速率/(g·s−1) 再夹带率E
(持续沸腾5 h后数据)RE1-1 0.124 TiO2 2 1.05 1.53×10−5 RE1-2 0.124 TiO2 5 1.06 1.13×10−5 RE1-3 0.124 TiO2 1 1.05 1.97×10−5 RE1-4 0.124 NaCl 2 1.12 1.96×10−5 RE1-5 0.124 TiO2+NaCl 2+2 1.05 2.97×10−5 RE1-6 0.124 TiO2+活性剂 2+2 1.02 2.41×10−6 RE1-7 0.065 TIO2 0.1 0.67 7.91×10−6 RE1-8 0.065 NaCl 0.1 0.71 4.62×10−6 RE1-9 0.065 TiO2+表面活性剂 0.1+0.2 0.65 1.32×10−6 RE1-10 0.065 TiO2+NaCl 0.1+0.1 0.67 1.71×10−6 RE1-11 0.065 TiO2 2 0.66 3.06×10−5 RE1-12 0.028 TiO2 2 1.44 8.91×10−5 -
[1] SUGIMOTO J, KAJIMOTO M, HASHIMOTO K, et al. Short overview on the definitions and significance of the late phase fission product aerosol/vapour source[Z]. Paris: Organisation for Economic Co-Operation and Development-Nuclear Energy Agency, 1994. [2] ZHANG Y P, NIU S P, ZHANG L T, et al. A review on analysis of LWR severe accident[J]. ASME Journal of Nuclear Engineering and Radiation Science, 2015, 1(4): 041018. doi: 10.1115/1.4030364 [3] ALLELEIN H J, AUVINEN A, BALL J, et al. State-of-the-art report on nuclear aerosols[Z]. Paris: Organisation for Economic Co-Operation and Development-Nuclear Energy Agency, 2009 [4] FIRNHABER M, KANZLEITER T F, SCHWARZ S, et al. International standard problem ISP37: VANAM M3-A multi compartment aerosol depletion test with hygroscopic aerosol material: comparison report[R]. Paris: Organisation for Economic Co-Operation and Development-Nuclear Energy Agency, 1996 [5] GUPTA S, SCHMIDT E, VON LAUFENBERG B, et al. THAI test facility for experimental research on hydrogen and fission product behaviour in light water reactor containments[J]. Nuclear Engineering and Design, 2015, 294: 183-201. doi: 10.1016/j.nucengdes.2015.09.013 [6] COSANDEY J. Droplet production over a boiling pool during a slow depressurization[D]. Swiss: ETH Zürich, 1999 [7] 魏严凇,陈林林,郑光宗,等. 安全壳内水池气泡破碎后夹带液滴的粒径分布[J]. 中国粉体技术,2021, 27(1): 50-57. doi: 10.13732/j.issn.1008-5548.2021.01.006 [8] THEERACHAISUPAKIJ W, MATSUSAKA S, KATAOKA M, et al. Effects of wall vibration on particle deposition and reentrainment in aerosol flow[J]. Advanced Powder Technology, 2002, 13(3): 287-300. doi: 10.1163/156855202320252453 [9] CALVERT S, JASHNANI I , YUNG S. Entrainment separators for scrubbers[J]. Journal of the Air Pollution Control Association, 1974, 24(10): 971-975. doi: 10.1080/00022470.1974.10470001 [10] 陈林林,魏严凇,史晓磊,等. 安全壳内剥蚀引起的气溶胶颗粒再悬浮[J]. 中国粉体技术,2020, 26(5): 1-6. doi: 10.13732/j.issn.1008-5548.2020.05.001 [11] 胡真,陈林林,郑光宗,等. 气溶胶再悬浮和再夹带行为的试验研究进展[J]. 中国原子能科学研究院年报,2020(1): 71-73.