高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

严重事故下安全壳内水池pH值分析模型开发与验证

戴薇 江娉婷 陈鹏 贺东钰

戴薇, 江娉婷, 陈鹏, 贺东钰. 严重事故下安全壳内水池pH值分析模型开发与验证[J]. 核动力工程, 2023, 44(4): 259-266. doi: 10.13832/j.jnpe.2023.04.0259
引用本文: 戴薇, 江娉婷, 陈鹏, 贺东钰. 严重事故下安全壳内水池pH值分析模型开发与验证[J]. 核动力工程, 2023, 44(4): 259-266. doi: 10.13832/j.jnpe.2023.04.0259
Dai Wei, Jiang Pingting, Chen Peng, He Dongyu. Development and Verification of Ph Calculation Model of in-Containment Refueling Water Storage Tank under Severe Accidents[J]. Nuclear Power Engineering, 2023, 44(4): 259-266. doi: 10.13832/j.jnpe.2023.04.0259
Citation: Dai Wei, Jiang Pingting, Chen Peng, He Dongyu. Development and Verification of Ph Calculation Model of in-Containment Refueling Water Storage Tank under Severe Accidents[J]. Nuclear Power Engineering, 2023, 44(4): 259-266. doi: 10.13832/j.jnpe.2023.04.0259

严重事故下安全壳内水池pH值分析模型开发与验证

doi: 10.13832/j.jnpe.2023.04.0259
基金项目: 国家重点研发计划(2019YFE0194200)
详细信息
    作者简介:

    戴 薇(1996—),女,工程师,现主要从事严重事故源项分析工作,E-mail: daiweinathalie@outlook.com

    通讯作者:

    陈 鹏,E-mail: chpeng@cgnpc.com.cn

  • 中图分类号: TL339

Development and Verification of Ph Calculation Model of in-Containment Refueling Water Storage Tank under Severe Accidents

  • 摘要: 为解决事故后核电厂安全壳内水池pH值计算工具缺失的问题,研究开发了可直接建模和实时模拟的pH值计算模型。基于牛顿拉夫森方法,通过建立关键物项物性及反应数据库,构建气-液两相化学平衡计算模型,开发了数据库完整、具备高辐照反应计算能力和事故进程耦合能力的pH值计算软件CalcpH。针对不同计算功能,CalcpH软件计算结果分别与事故分析软件ASTEC和化学平衡计算软件PHREEQC计算结果进行了对比。结果表明,对于非辐照反应,CalcpH软件计算结果与PHREEQC软件计算结果差距在1.3%以内;对于辐照反应,CalcpH软件计算结果与ASTEC软件计算结果差距在2.7%以内。同时,CalcpH软件计算结果与实验对比,其误差在1%以内。通过软件对比与实验对比2种方式充分证明了计算结果的可靠性。因此,CalcpH软件建立的数值计算模型可用于事故后安全壳内水池pH值的预测。

     

  • 图  1  pH分析模型程序架构

    Figure  1.  Framework of pH Calculation Model

    图  2  pH分析模型开发流程图

    t0—初始时刻;tend—计算结束时间;Δt—计算时间步长

    Figure  2.  Flow Chart of pH Calculation Model Development

    图  3  TSP加入时CalcpH软件与PHREEQC计算值比较

    Figure  3.  Comparison of Calculation Values by CalcpH and PHREEQC with Addition of TSP

    图  4  CsOH加入时CalcpH软件与PHREEQC计算值比较

    Figure  4.  Comparison of Calculation Values by CalcpH and PHREEQC with Addition of CsOH

    图  5  HI加入时CalcpH软件与PHREEQC计算值比较

    Figure  5.  Comparison of Calculation Values by CalcpH and PHREEQC with Addition of HI

    图  6  辐照条件下CalcpH与ASTEC软件计算值比较

    Figure  6.  Comparison of Calculation Values by CalcpH and ASTEC under Irradiation Condition

    图  7  CalcpH软件计算值与实验值关于HNO3添加的比较

    Figure  7.  Comparison of Calculation Values by CalcpH and Experiment Values with Addition of HNO3

    图  8  CalcpH软件计算值与实验值关于TSP添加的比较

    Figure  8.  Comparison of Calculation Values by CalcpH and Experiment Values with Addition of TSP

    表  1  影响pH值的关键物项

    Table  1.   Key Items Affecting pH Value

    物质名称来源酸碱性
    硝酸(HNO3空气和水辐照分解产物酸性
    盐酸(HCl)含氯电缆辐照分解和热分解产物酸性
    硼酸(H3BO3安注、喷淋、换料水箱、反应堆冷却系统酸性
    氢碘酸 (HI)酸性裂变产物酸性
    碳酸 (H3CO3空气中CO2的溶解酸性
    有机酸有机物杂质与水辐照分解产物作用产生酸性
    pH值控制添加剂在回流水流道上调节篮中添加以控制pH值碱性
    氢氧化锂(LiOH)反应堆冷却系统碱性
    氢氧化铯(CsOH)碱性裂变产物碱性
    碱性氧化物(NaOH)堆芯熔融物与混凝土作用产生气溶胶碱性
    下载: 导出CSV
  • [1] 郑华. EPR与CPR1000严重事故缓解措施比较[J]. 核科学与工程,2010, 30(3): 250-257.
    [2] CLÉMENT B, HANNIET-GIRAULT N, REPETTO G, et al. LWR severe accident simulation: synthesis of the results and interpretation of the first Phebus FP experiment FPT0[J]. Nuclear Engineering and Design, 2003, 226(1): 5-82. doi: 10.1016/S0029-5493(03)00157-2
    [3] CRIPPS R C, GÜNTAY S, JÄCKEL B. The PSIodine code: a computer program to model experimental data on iodine and other species in irradiated CsI solutions sparged with argon, air, or nitrous oxide[J]. Nuclear Engineering and Design, 2011, 241(10): 4306-4325. doi: 10.1016/j.nucengdes.2011.08.010
    [4] WREN J C, BALL J M. LIRIC 3.2 an updated model for iodine behaviour in the presence of organic impurities[J]. Radiation Physics and Chemistry, 2001, 60(6): 577-596. doi: 10.1016/S0969-806X(00)00385-6
    [5] MORIYAMA K, MARUYAMA Y, NAKAMURA H. Kiche: a simulation tool for kinetics of iodine chemistry in the containment of light water reactors under severe accident conditions (Contract research): JAEA-Data/Code 2010-034[R]. Tokai: Japan Atomic Energy Agency, 2011.
    [6] FRANK RAHN. MAAP4 - modular accident analysis, nuclear power division: RP3131-02[R]. U. S. : Electric Power Research Institute, 2007
    [7] GAUNTT R O, CASH J E, COLE R K, et al. MELCOR computer code manuals vol. 2: reference manuals: NUREG/CR-6119[R]. Washington: U. S. : Nuclear Regulatory Commission, 2005.
    [8] COUSIN F. ASTEC V2.2 pH module: Modelling and user manual: IRSN/2016-00117[R]: France: Saint-Paul-Lez-Durance, IRSN, 2016
    [9] PARKHURST D L, APPELO C A J. User’s guide to PHREEQC (version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: Water-Resources Investigations Report 99-4259[R]. Denver: U. S. Department of the Interior, 1999.
    [10] BEAHM E C, LORENZ R A, WEBER C F. Iodine evolution and pH control: NUREG/CR-5950[R]. Washington: U. S. Nuclear Regulatory Commission, 1992.
    [11] WREN J C, BALL J M, GLOWA G A. Studies on the effects of organic-painted surfaces on pH and organic iodide formation: NEA/CSNI/R(99)7[R]. Vantaa, Finland: OECD Workshop on Iodine Aspects of Severe Accident Management, 1999.
    [12] BEAHM E C, WEBER C F, KRESS T S, et al. Iodine chemical forms in LWR severe accidents: NUREG/CR-5732[R]. Washington: U. S.: Nuclear Regulatory Commission, 1992.
    [13] KEKKI T, ZILLIACUS R. Formation of nitric acid during high gamma dose radiation: VTT-R-00774-11[R]. Finland: VTT Technical Research Centre of Finland, 2011.
    [14] LANGMUIR D. Aqueous environmental geochemistry[M]. Upper Saddle River, New Jersey: Prentice Hall, 1997: 600.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  362
  • HTML全文浏览量:  35
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-21
  • 修回日期:  2022-11-20
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回