高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核反应堆有效增殖系数深度学习直接搜索求解方法

刘东 唐雷 安萍 张斌 江勇

刘东, 唐雷, 安萍, 张斌, 江勇. 核反应堆有效增殖系数深度学习直接搜索求解方法[J]. 核动力工程, 2023, 44(5): 6-14. doi: 10.13832/j.jnpe.2023.05.0006
引用本文: 刘东, 唐雷, 安萍, 张斌, 江勇. 核反应堆有效增殖系数深度学习直接搜索求解方法[J]. 核动力工程, 2023, 44(5): 6-14. doi: 10.13832/j.jnpe.2023.05.0006
Liu Dong, Tang Lei, An Ping, Zhang Bin, Jiang Yong. The Deep Learning Method to Search Effective Multiplication Factor of Nuclear Reactor Directly[J]. Nuclear Power Engineering, 2023, 44(5): 6-14. doi: 10.13832/j.jnpe.2023.05.0006
Citation: Liu Dong, Tang Lei, An Ping, Zhang Bin, Jiang Yong. The Deep Learning Method to Search Effective Multiplication Factor of Nuclear Reactor Directly[J]. Nuclear Power Engineering, 2023, 44(5): 6-14. doi: 10.13832/j.jnpe.2023.05.0006

核反应堆有效增殖系数深度学习直接搜索求解方法

doi: 10.13832/j.jnpe.2023.05.0006
基金项目: 国家高层次人才特殊支持计划科技创新领军人才基金项目(J705981200002001)
详细信息
    作者简介:

    刘 东(1973—),男,博士,研究员,博导,现主要从事反应堆数值计算方法、工业软件、数字仿真、人工智能方面的研究,E-mail: 493159139@qq.com

  • 中图分类号: TL334

The Deep Learning Method to Search Effective Multiplication Factor of Nuclear Reactor Directly

  • 摘要: 求解有效增殖系数(keff)是核反应堆临界计算的基本问题,目前业界普遍采用源迭代方法进行求解。本文基于人工智能深度学习方法求解微分方程的基础理论,提出将keff与神经网络各神经元权重共同作为机器学习优化参数,针对将神经网络函数代入中子学微分方程形成的加权损失函数进行深度学习计算,同时进行中子注量率逼近与keff直接搜索求解的新方法。讨论了中子学微分方程特征值数理形式、初始神经网络设定方法、损失函数加权因子、收敛准则等影响深度学习性能的重要因素及相应的性能提升策略;通过多种算例的数值计算验证了该方法的正确性,以及学习性能提升策略的有效性。研究成果为核反应堆求解keff这一中子学物理重要科学问题探索出了一条新的技术途径。

     

  • 图  1  不同初始条件 keff收敛过程及算例5计算结果图

    Figure  1.  keff Convergence Process under Different Initial Conditions and Calculation Results of Example 5

    图  2  材料区域几何描述

    Figure  2.  Geometric Description of Material Area

    图  3  快群与热群的注量率计算结果

    Figure  3.  Calculation Rresults of Flux Density Distribution of Fast Group and Heat Group

    图  4  一维平板几何单群输运问题中中子注量率计算结果

    Figure  4.  Calculation Results of Neutron Flux of One-Dimensional Slab One-Group Transport Problem

    表  1  一维平板几何单群单材料扩散问题计算结果

    Table  1.   Calculation Results of One-Dimensional Slab Single Group Single Material Diffusion Problem

    算例kkeff_rPbPtkeff_skeff_relDLossσMSEσSEi,max
    11.4250.9550500.97770.02920.01791.0054×10−44.4461×10−4
    21.4250.9530300.98560.03750.02292.1839×10−49.7300×10−4
    31.4250.9510100.98520.03710.01103.1139×10−40.00142
    41.4250.9550100.95960.01010.00351.7543×10−55.2826×10−5
    51.4250.9510500.98860.04060.01084.4073×10−40.0018
    61.4250.9510~50*10~50*0.9499−1.0526×10−41.2418×10−42.3044×10−81.0789×10−7
    71.5751.0550501.09830.04600.04392.3015×10−40.0011
    81.5751.0530301.05460.00449.5737×10−43.6342×10−61.5015×10−5
    91.5751.0510101.05220.00211.7608×10−41.266×10−65.2569×10−6
    101.5751.0550101.06740.01660.00753.3881×10−51.4986×10−4
    111.5751.0510501.05380.00362.7161×10−43.9332×10−61.5473×10−5
    121.5751.0510~50*10~50*1.05019.5238×10−51.7485×10−41.3314×10−85.7686×10−8
      *—权重随机;keff_rkeff理论值;keff_s keff实际求解值;keff_relkeff相对偏差,keff_rel =(keff_skeff_r)/keff_rσMSE—中子注量率平均方差,即机器学习方法求出的各空间离散点注量率数值解与解析解的方差平均值;σSEi,max—中子注量率最大方差,即空间离散点中注量率数值解与解析解方差的最大值
    下载: 导出CSV

    表  2  两维圆柱几何单群单材料扩散问题计算结果

    Table  2.   Calculation Results of Two-Dimensional Cylindrical Geometry Single Group Single Material Diffusion Problem

    算例kkeff_rPbPtkeff_skeff_relDLossσMSEσSEi,max
    11.3500.90050500.90250.00284.6361×10−41.3725×10−62.4390×10−5
    21.3500.90030300.90055.5555×10−44.7125×10−56.7853×10−81.3253×10−6
    31.3500.90010100.90950.01060.00274.3597×10−56.3004×10−4
    41.3500.90010~50*10~50*0.90090.00100.00842.6671×10−63.8331×10−5
    51.6501.10050501.10950.00860.01133.8655×10−56.5992×10−4
    61.6501.10030301.10700.00640.00241.4379×10−52.2977×10−4
    71.6501.10010101.10240.00225.1359×10−45.7976×10−64.1215×10−5
    81.6501.10010~50*10~50*1.10340.00310.00162.3881×10−62.1793×10−5
    下载: 导出CSV

    表  3  三维立方体几何单群单材料扩散问题计算结果

    Table  3.   Calculation Rresults of Three-dimensional Cubic Geometry Single Group Single Material Diffusion Problem

    算例kkeff_r初始网络keff_skeff_relDLossσMSEσSEi,max
    11.4250.95k=1,随机网络0.95880.00930.00132.3236×10−52.0309×10−4
    21.4250.95k=1,已收敛网络0.95490.00520.00211.5792×10−51.2297×10−4
    31.3500.90k=1,随机网络0.90390.00430.00701.2244×10−49.5364×10−4
    41.3500.90k=1,已收敛网络0.90460.00510.00334.4672×10−52.4292×10−4
    51.3500.90算例2已收敛网络与k0.90380.00420.00172.1639×10−51.4398×10−4
    下载: 导出CSV

    表  4  计算区域材料特性

    Table  4.   Calculate Area Material Properties

    材料号能群Dg/cm$ {\varSigma _{\text{a}}} $/cm−1$ \nu {\varSigma _{\text{f}}} $/cm−1${\varSigma _{{1 \to 2} } }$/cm−1
    11.2680.0071810.0046090.02767
    20.19020.070470.08675
    11.2550.0082520.0046020.02533
    20.2110.10030.1091
    下载: 导出CSV

    表  5  两维长方形几何多群多材料扩散问题计算结果

    Table  5.   Calculation Results of Two-Dimensional Rectangular Geometry Multi Group Multi Material Diffusion Problem

    机器学习获得的keff_s快群DLoss的MSE热群DLoss的MSECORCA-3DPARCSDNTR
    keff计算值相对偏差keff计算值相对偏差keff计算值相对偏差
    1.06602.0985×10−44.5409×10−51.06900.00281.07100.00471.07120.0049
      MSE—均方误差
    下载: 导出CSV

    表  6  一维平板几何单群输运问题特征值计算结果

    Table  6.   Eigenvalue Calculation Result of One-Dimensional Slab Geometry Single Group Transport Problem

    机器学习获得的keffΔ相对偏差结束时DLoss函数σMSE
    1.02101.02000.000980391.2538×10−5
    下载: 导出CSV
  • [1] 谢仲生, 曹良志, 张少泓. 核反应堆物理分析[M]. 第五版. 西安: 西安交通大学出版社, 2020: 69-90.
    [2] 谢仲生, 邓力. 中子输运理论数值计算方法[M]. 西安: 西北工业大学出版社, 2005: 11-50.
    [3] XIE Y C, WANG Y H, MA Y, et al. Neural network based deep learning method for multi-dimensional neutron diffusion problems with novel treatment to boundary[J]. Journal of Nuclear Engineering, 2021, 2(4): 533-552. doi: 10.3390/jne2040036
    [4] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
    [5] 刘东,罗琦,唐雷,等. 基于PINN深度机器学习技术求解多维中子学扩散方程[J]. 核动力工程,2022, 43(2): 1-8. doi: 10.13832/j.jnpe.2022.02.0001
    [6] GALIB S M, BHOWMIK P K, AVACHAT A V, et al. A comparative study of machine learning methods for automated identification of radioisotopes using NaI gamma-ray spectra[J]. Nuclear Engineering and Technology, 2021, 53(12): 4072-4079. doi: 10.1016/j.net.2021.06.020
    [7] 周蜀林. 偏微分方程[M]. 北京: 北京大学出版社, 2005: 1-16.
    [8] HAGAN M T, DEMUTH H B, BEALE M H, et al. Neural network design[M]. 2nd ed. Oklahoma: Martin Hagan, 2014: (2-1)-(2-25).
    [9] BYRD R H, GILBERT J C, NOCEDAL J. A trust region method based on interior point techniques for nonlinear programming[J]. Mathematical Programming, 2000, 89(1): 149-185. doi: 10.1007/PL00011391
    [10] DUMOUCHEL W H, O'BRIEN F L. Integrating a robust option into a multiple regression computing environment[C]//Computer Science and Statistics: Proceedings of the 21st Symposium on the Interface. Alexandria, VA: American Statistical Association, 1989: 41-48.
    [11] KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego, 2014: 1-15.
    [12] 杨强, 张宇, 戴文渊, 等. 迁移学习[M]. 北京: 机械工业出版社, 2020: 2-79.
    [13] AN P, MA Y Q, XIAO P, et al. Development and validation of reactor nuclear design code CORCA-3D[J]. Nuclear Engineering and Technology, 2019, 51(7): 1721-1728. doi: 10.1016/j.net.2019.05.015
    [14] DOWNAR T, XU Y, SEKER V. PARCS v3.0 US NRC core neutronics simulator theory manual[M]. Rockville, MD: US NRC, 2012: 5-98.
    [15] 卢皓亮,吴宏春,曹良志,等. 中子输运方程的三角形节块SN方法研究[J]. 核动力工程,2006, 27(5): 6-11. doi: 10.3969/j.issn.0258-0926.2006.05.002
    [16] 杜书华. 输运问题的计算机模拟[M]. 长沙: 湖南科学技术出版社, 1988: 130-150, 304-345.
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  1723
  • HTML全文浏览量:  78
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 录用日期:  2022-11-27
  • 修回日期:  2022-11-27
  • 刊出日期:  2023-10-13

目录

    /

    返回文章
    返回