高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于确定论的ZrHx中H热中子散射数据评价

王立鹏 张信一 姜夺玉 胡田亮 曹良志 吴宏春 曹璐

王立鹏, 张信一, 姜夺玉, 胡田亮, 曹良志, 吴宏春, 曹璐. 基于确定论的ZrHx中H热中子散射数据评价[J]. 核动力工程, 2023, 44(5): 23-29. doi: 10.13832/j.jnpe.2023.05.0023
引用本文: 王立鹏, 张信一, 姜夺玉, 胡田亮, 曹良志, 吴宏春, 曹璐. 基于确定论的ZrHx中H热中子散射数据评价[J]. 核动力工程, 2023, 44(5): 23-29. doi: 10.13832/j.jnpe.2023.05.0023
Wang Lipeng, Zhang Xinyi, Jiang Duoyu, Hu Tianliang, Cao Liangzhi, Wu Hongchun, Cao Lu. Evaluation of Thermal Neutron Scattering Data for H in ZrHx Based on Deterministic Method[J]. Nuclear Power Engineering, 2023, 44(5): 23-29. doi: 10.13832/j.jnpe.2023.05.0023
Citation: Wang Lipeng, Zhang Xinyi, Jiang Duoyu, Hu Tianliang, Cao Liangzhi, Wu Hongchun, Cao Lu. Evaluation of Thermal Neutron Scattering Data for H in ZrHx Based on Deterministic Method[J]. Nuclear Power Engineering, 2023, 44(5): 23-29. doi: 10.13832/j.jnpe.2023.05.0023

基于确定论的ZrHx中H热中子散射数据评价

doi: 10.13832/j.jnpe.2023.05.0023
基金项目: 国家自然科学基金(11905174,12275219)
详细信息
    作者简介:

    王立鹏(1988—),男,副研究员,博士研究生,现从事核数据评价和反应堆物理研究,E-mail: wang0214@126.com

  • 中图分类号: TL329.2

Evaluation of Thermal Neutron Scattering Data for H in ZrHx Based on Deterministic Method

  • 摘要: ZrHx由于具有较高的H含量和较好的慢化特性,在核技术中得到了广泛的应用,然而,ZrHx中H的热中子散射数据的产生大多采用了直接数值模拟的方法,并未经过基于实验数据的评价。本文提出了一种与半经验声子模型相关的ZrHx中H的热中子散射数据的快速确定论评价方法,通过采用广义最小二乘法将计算机模拟的热散射数据与实验数据进行调整来完成,实验数据采用总截面测量值和反应堆基准题的有效增殖系数(keff),结果表明,经过调整后ZrHx中H声子态密度光学项的能量区间发生高能区偏移,所得到的总截面值与实验数据吻合较好,调整之后的2个TRIGA反应堆临界基准题的keff计算精度得到了改进。

     

  • 图  1  基于总截面测量值的GLS调整前后声子态密度的对比    

    Figure  1.  Comparison of the Phonon Density of State before and after GLS Adjustment Based on Total Cross-section Measurement

    图  2  基于总截面测量值的GLS迭代10次前后的总截面对比      

    1 b=10−28m2

    Figure  2.  Comparison of Total Cross-section before and after 10-Iteration GLS Based on Total Cross-section Measurement

    图  3  基于总截面测量值的GLS迭代10次内的χ2变化

    Figure  3.  χ2 Change of GLS within 10 Iterations Based on Total Cross-section Measurements

    图  4  基于基准题keff实验数据调整前后的声子态密度对比

    Figure  4.  Comparison of Phonon Density of State before and after Adjustment Based on Benchmark keff Experimental Data

    图  5  基于基准题keff实验数据的GLS迭代10次内的χ2变化       

    Figure  5.  χ2 Change of GLS within 10 Iterations Based on Benchmark keff Experimental Data

    表  1  ZrHx中H的PP声子模型各参数取值范围

    Table  1.   Range of Parameters of the PP Phonon Model of H in ZrHx

    参数 b p/MeV $ {T_{{\text{DH}}}} $/MeV F/MeV
    取值范围 [1/361,1/91] [127,147] [16,24] [25,31]
    下载: 导出CSV

    表  2  基于总截面测量值的GLS调整前后的各参数方差

    Table  2.   Variance of Parameters before and after GLS Adjustment Based on Total Cross-section Measurement

    参数 调整前 调整后
    先验值 先验方差/% 后验值 后验方差/%
    b 0.00688 59.70 0.00987991 26.74
    TDH 0.020 20.00 0.02072131 18.95
    p 0.137 7.30 0.14431658 0.42
    σ 0.028 10.70 0.03080419 5.15
    下载: 导出CSV

    表  3  基于总截面测量值的GLS调整前后的各参数协方差系数百分比 %

    Table  3.   Percentage of Covariance Coefficient of Parameters before and after GLS Adjustment Based on Total Cross-section Measurement

    参数 调整前 调整后
    b 100 0 0 0 100 7 −56 −57
    TDH 0 100 0 0 7 100 13 9
    p 0 0 100 0 −56 13 100 55
    σ 0 0 0 100 −57 9 55 100
    下载: 导出CSV

    表  4  GLS调整前后总截面计算值与实验值的平方偏差

    Table  4.   Square Deviation between Calculated and Experimental Total Cross-Section before and after GLS Adjustment

    参数 CF 模型 DG 模型 GLS初始值 GLS迭代10次的结果
    χ2 3.15×101 3.75×101 3.42×101 7.91
    下载: 导出CSV

    表  5  基于总截面测量值调整前后的基准题keff计算值对比

    Table  5.   Comparison of Calculated Values of Benchmark keff Based on Total Cross-section Measurement before and after Adjustment

    基准题结果 初始结果(误差/pcm) 基于总截面测量值GLS
    调整后的基准题keff(误差/pcm)
    1.00060 1.00243(183) 1.00189(129)
    1.00460 1.00719(259) 1.00701(241)
    下载: 导出CSV

    表  6  基于基准题keff实验数据调整前后的声子态密度参数方差      

    Table  6.   Variance of Parameters before and after Adjustment Based on Benchmark keff Experimental Data

    参数 调整前 调整后
    先验值 先验方差/% 后验值 后验方差/%
    b 0.00688 59.70 0.00707 2.36
    TDH 0.02000 20.00 0.02055 2.05
    p 0.13700 7.30 0.13874 1.89
    σ 0.02800 10.70 0.02876 2.12
    下载: 导出CSV

    表  7  基于基准题keff实验数据调整前后的声子态密度参数的协方差相关系数百分比 %

    Table  7.   Percentage of Covariance Coefficient of Phonon Density of State Parameters before and after Adjustment Based on Benchmark keff Experimental Data

    参数 调整前 调整后
    b 100 0 0 0 100 −36 −20 −15
    TDH 0 100 0 0 −36 100 −27 −6
    p 0 0 100 0 −20 −27 100 −25
    σ 0 0 0 100 −15 −6 −25 100
    下载: 导出CSV

    表  8  基于基准题keff实验数据调整前后的keff计算值对比

    Table  8.   Comparison of keff Calculation Value before and after Adjustment Based on Benchmark keff Experimental Data

    调整前 误差/pcm 调整后 误差/pcm
    1.00189 129 1.00157 97
    1.00701 241 1.00617 157
    下载: 导出CSV
  • [1] SLAGGIE E L. Central force lattice dynamical model for zirconium hydride[J]. Journal of Physics and Chemistry of Solids, 1968, 29(6): 923-934. doi: 10.1016/0022-3697(68)90227-8
    [2] MALIK S S, RORER D C, BRUNHART G. Optical-phonon structure and precision neutron total cross section measurements of zirconium hydride[J]. Journal of Physics F:Metal Physics, 1984, 14(1): 73-81. doi: 10.1088/0305-4608/14/1/010
    [3] MATTES M, KEINERT J. Thermal neutron scattering data for the moderator materials H2O, D2O and ZrHx in ENDF-6 format and as ACE library for MCNP(X) codes: INDC (NDS)-0470[R]. Vienna: International Atomic Energy Agency, 2005.
    [4] ZHENG W X, MCCLARREN R G. Physics-based uncertainty quantification for the ZrHx thermal scattering law[C]//ANS Winter Meeting 2013. Washington: ANS, 2013.
    [5] ZHENG W X, MCCLARREN R G. Emulation-based calibration for parameters in parameterized phonon spectrum of ZrHx in TRIGA reactor simulations[J]. Nuclear Science and Engineering, 2016, 183(1): 78-95. doi: 10.13182/NSE15-48
    [6] WANG L P, WAN C H, CAO L Z, et al. Phonon parameters fitting for the simulated thermal-neutron scattering cross section of H in ZrHx using unified Monte Carlo method[J]. Annals of Nuclear Energy, 2021, 151: 107920. doi: 10.1016/j.anucene.2020.107920
    [7] KONING A J, ROCHMAN D. Towards sustainable nuclear energy: putting nuclear physics to work[J] Annals of Nuclear Energy, 2008, 35(11): 2024-2030.
    [8] SCOTTA J P, NOGUERE G, BERNARD D, et al. Study of neutron scattering in light water in the mistral experiments carried out in EOLE reactor at CEA cadarache[C]//PHYSOR 2016 - International Conference on the Advances in Reactor Physics. Sun Valley, USA, 2016.
    [9] MACFARLANE R, MUIR D W, BOICOURT R M, et al. The NJOY nuclear data processing system, version 2016: LA-UR-17-20093[R]. Los Alamos: Los Alamos National Laboratory, 2017.
    [10] SMITH D L. Probability, statistics, and data uncertainties in nuclear science and technology[M]. LaGrange Park: American Nuclear Society, 1991.
    [11] WHITTEMORE W L. Differential neutron thermalization: GA-5554[R]. Washington: U. S. Atomic Energy Commission, 1964.
    [12] PUROHIT S N, PAN S S, BISCHOFF F, et al. Inelastic neutron scattering in metal hydrides, UC and UO2, and applications of the scattering law[C]//IAEA Symposium on Neutron Thermalization and Reactor Spectra. Ann Arbor: IAEA, 1968: 407-435.
    [13] ĆALIĆ D, ŽEROVNIK G, TRKOV A, et al. Validation of the serpent 2 code on TRIGA mark II benchmark experiments[J]. Applied Radiation and Isotopes, 2016, 107: 165-170. doi: 10.1016/j.apradiso.2015.10.022
    [14] LEPPÄNEN J, PUSA M, VIITANEN T, et al. The serpent Monte Carlo code: status, development and applications in 2013[J]. Annals of Nuclear Energy, 2015, 82: 142-150.
  • 加载中
图(5) / 表(8)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  59
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-18
  • 修回日期:  2023-05-08
  • 刊出日期:  2023-10-13

目录

    /

    返回文章
    返回