Numerical Study on Bending Angle Optimization of Rod Bundle Channel Spacer Grid Mixing Vane Based on Subcooled Boiling CFD
-
摘要: 定位格架是燃料组件的关键部件,不仅对燃料组件起到固定和支撑的作用,还影响着燃料组件的热工水力性能。本文采用基于欧拉-欧拉两流体六方程的伦斯勒理工学院(RPI)壁面沸腾模型,对5×5燃料棒束通道中出现过冷沸腾时的工况进行数值模拟研究,获得了棒束通道内的流场、中心棒束不同轴向高度处的周向壁面温度和空泡份额的分布情况。数值计算结果表明,棒束通道的压力损失随着搅混翼折弯角度的增大而增大;当搅混翼折弯角度为30°时,空泡份额相对较少,在定位格架的下游中心棒束温度峰值相对较低。Abstract: The spacer grid is a key component of the fuel assembly. It not only fixes and supports the fuel assembly, but also affects the thermal and hydraulic performance of the fuel assembly. In this paper, the Rensselaer Polytechnic Institute(RPI) wall boiling model based on the Euler-Euler six equations of two fluids is used to carry out a numerical simulation study on the working conditions when subcooled boiling occurs in the 5×5 fuel rod bundle channel; the flow field in the rod bundle channel, the distribution of circumferential wall temperature at different axial heights of the central rod bundle and the distribution of void are obtained. The numerical study results show that the pressure loss of the rod bundle channel increases with the increase of the bending angle of the mixing vane; when the bending angle of the mixing vane is 30°, the proportion of void is relatively small, and the peak temperature of the central rod bundle is relatively low in the downstream of the spacer grid.
-
Key words:
- Rod bundle channel /
- Subcooled boiling /
- Numerical study /
- Spacer grid
-
表 1 计算域边界条件设置
Table 1. Calculation Domain Boundary Condition Settings
计算域边界 温度/℃ 速度/
(m·s−1)空泡
份额相对压
力/MPa系统压
力/MPa入口 气相 0 16.5 液相 343.2 1.505 出口 气相 0 液相 表 2 网格数量设置
Table 2. Mesh Quantity Settings
网格编号 网格数量 1 430万 2 773万 3 1495万 4 2415万 -
[1] 朱继洲. 核反应堆安全分析[M]. 西安: 西安交通大学出版社, 2000: 408. [2] YANG R, CHENG B, DESHON J, et al. Fuel R & D to improve fuel reliability[J]. Journal of Nuclear Science and Technology, 2006, 43(9): 951-959. doi: 10.1080/18811248.2006.9711181 [3] 陈宝山, 刘承新. 轻水堆燃料元件[M]. 北京: 化学工业出版社, 2007: 385. [4] 郝老迷, 胡古, 郭春秋. 沸腾传热和气液两相流动[M]. 哈尔滨: 哈尔滨工程大学出版社, 2016: 295. [5] ANGLART H, NYLUND O, KURUL N, et al. CFD prediction of flow and phase distribution in fuel assemblies with spacers[J]. Nuclear Engineering and Design, 1997, 177(1-3): 215-228. doi: 10.1016/S0029-5493(97)00195-7 [6] SALNIKOVA D I T. Two-phase CFD analyses in fuel assembly sub-channels of Pressurized Water Reactors under swirl conditions[J]. Nuclear Engineering and Design, 2010, 68(5): 19-28. [7] KURUL N, PODOWSKI M Z. Multidimensional effects in forced convection subcooled boiling[C]//Proceedings of the Ninth International Heat Transfer Conference. New York: Hemisphere Publishing, 1990. [8] 肖毅. 带格架燃料组件内复杂流动和传热特性的数值模拟研究[D]. 重庆: 重庆大学, 2016. [9] KURUL N, PODOWSKI M Z. On the modeling of multidimensional effects in boiling channels[C]//Proceedings of the 27th National Heat Transfer Conference. Minneapolis: ANS, 1991. [10] ÜNAL H C. Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling of water up to 17.7 MN/m2[J]. International Journal of Heat and Mass Transfer, 1976, 19(6): 643-649. doi: 10.1016/0017-9310(76)90047-8 [11] COLE R. A photographic study of pool boiling in the region of the critical heat flux[J]. AICHE Journal, 1960, 6(4): 533-538. doi: 10.1002/aic.690060405 [12] LEMMERT M, CHAWLA L M. Influence of flow velocity on surface boiling heat transfer coefficient in heat transfer in boiling[J]. International Journal of Applied Engineering Research, 2015, 10(9): 22909-22918. [13] KOCAMUSTAFAOGULLARI G, ISHII M. Foundation of the interfacial area transport equation and its closure relations[J]. International Journal of Heat and Mass Transfer, 1995, 38(3): 481-493. doi: 10.1016/0017-9310(94)00183-V [14] DEL VALLE V H, KENNING D B R. Subcooled flow boiling at high heat flux[J]. International Journal of Heat and Mass Transfer, 1985, 28(10): 1907-1920. doi: 10.1016/0017-9310(85)90213-3 [15] MORAGA F J, BONETTO F J, LAHEY R T. Lateral forces on spheres in turbulent uniform shear flow[J]. International Journal of Multiphase Flow, 1999, 25(6-7): 1321-1372. doi: 10.1016/S0301-9322(99)00045-2