Development of Fatigue Monitoring and Transient Counting System in HPR1000
-
摘要: 华龙一号是我国自主研发的第三代核电技术,疲劳监测和瞬态统计系统是华龙一号中重要的监测系统,对提高核电厂安全性和经济性均有积极的作用。中国核动力研究设计院研制了具有自主知识产权的疲劳监测和瞬态统计系统。该系统由25个测温组件、1台信号处理机柜和1台计算工作站组成,包含导热反问题、格林函数应力计算、冷却剂环境疲劳计算、瞬态统计等多个模块,具备一回路系统疲劳状态监测和运行瞬态自动识别统计的功能。该系统通过原理样机与工程样机的研制,相关关键技术通过验证得到固化,技术成熟,具备工程应用条件。Abstract: HPR1000 is one of the 3rd generation nuclear power plants in China. The fatigue monitoring and transient counting system is an important monitoring system in HPR1000, which plays a positive role in the safe and economical operation of HPR1000. Nuclear Power Institute of China has developed a fatigue monitoring and transient counting system with independent intellectual property rights. The system consists of 25 temperature measuring components, a signal processing cabinet and a computing workstation. The models for thermal inverse problem, green function stress calculation, coolant environmental fatigue calculation, and transient counting have been developed, which allow the functions of monitoring the fatigue state of the primary system and automatically identifying and counting the running transient. Through the development of principle prototype and engineering prototype, the related key technologies have been solidified through verification, and the technology is mature and has engineering application conditions.
-
Key words:
- HPR1000 /
- Fatigue monitoring /
- Transient counting
-
表 1 当前疲劳监测系统汇总表
Table 1. Summary of Current Fatigue Monitoring System
系统名称 国家 公司 应用机组/台 Fatigue Pro 美国 Structural Intergrity >84 WESTEMS 美国 Westinghouse >8 FAMOS 德国 Curtiss-Wright 31 SYSFAC 法国 EDF 不详 SACOR 俄罗斯 OKB Giress >9 FAMS 日本 JAPEIC >2 表 2 IFT系统设备清单
Table 2. Device List of IFT System
序号 硬件设备 数量 1 测温组件 25套① 2 信号处理机柜 1台 2.1 温度传感器数据I/O板卡 1套 2.2 NC DCS数据处理设备 1套 2.3 数据存储备份装置 1套 3 计算工作站 1套 3.1 计算工作站主机 1台 3.2 显示器 1台 3.3 键盘、鼠标 1套 3.4 打印机 1台 注:①根据不同电厂情况需要具体定制,在漳州核电厂1/2号机组(华龙一号)工程中为25套;I/O—输入/输出 -
[1] BIMONT, AUFORT P. Fatigue monitoring in nuclear power plants[C]//Transactions of the 9th International Conferenceon SMIRT. Lausanne Witzerland, 1987: 133-140. [2] NRC. Thermal stresses in piping connected to reactor coolant systems: Bulletin 88-08[R]. Washington: NRC, 1988. [3] NRC. Pressurizer surge line thermal stratification: Bulletin 88-11[R]. Washington: NRC, 1988. [4] 贺寅彪,曹明,姚伟达. 关于LWR设备设计中考虑环境对疲劳影响问题的探讨[J]. 核动力工程,2011, 32(S1): 35-39,97. [5] 张彦召, 郭文海, 遆文新. 核电站反应堆冷却剂辅助管道热疲劳监测技术研究[C]//中国核科学技术进展报告(第二卷)——中国核学会2011年学术年会论文集第3册(核能动力分卷(下)). 贵阳: 原子能出版社, 2011. [6] 谢海,邵雪娇,张毅雄,等. 基于格林函数方法的核部件疲劳分析方法研究[J]. 原子能科学技术,2021, 55(2): 305-314. doi: 10.7538/yzk.2020.youxian.0379 [7] 邵雪娇,谢海,熊夫睿,等. 压水堆材料冷却剂环境疲劳修正因子研究[J]. 原子能科学技术,2020, 54(6): 1085-1091. doi: 10.7538/yzk.2019.youxian.0591 [8] BAI X M, XIE H, SHI K K, et al. A hybrid fatigue analysis method for fatigue monitor system[C]//ASME 2020 Pressure Vessels & Piping Conference. US: ASME, 2020: 21180. [9] 白晓明,王新军,艾红雷,等. 基于动态时间弯曲算法的核电厂瞬态识别方法研究[J]. 装备环境工程,2019, 16(2): 82-85. [10] BAI X M, AI H L, WANG X J. A DTW based automatic transient identification method in nuclear power plants[J]. Transactions of the American Nuclear Society, 2018, 118(1): 284-286. [11] 熊平,艾红雷,卢涛,等. 一维非稳态导热反问题反演管道内壁面温度波动[J]. 核动力工程,2018, 39(2): 96-100. doi: 10.13832/j.jnpe.2018.00.0096 [12] 王新军,艾红雷,张毅雄,等. 导热反问题在波动管热分层试验分析中的应用研究[J]. 核动力工程,2020, 41(S2): 74-78. doi: 10.13832/j.jnpe.2020.S2.0074 [13] 白晓明,郑连纲,艾红雷,等. 基于趋势滤波的瞬态曲线协同分段线性化方法研究[J]. 核动力工程,2018, 39(2): 72-75. doi: 10.13832/j.jnpe.2018.02.0072