高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑SSI效应的核电厂SSC耦合体系模型主余震易损性分析

赵锦一 宋雷 周志光

赵锦一, 宋雷, 周志光. 考虑SSI效应的核电厂SSC耦合体系模型主余震易损性分析[J]. 核动力工程, 2023, 44(5): 85-94. doi: 10.13832/j.jnpe.2023.05.0085
引用本文: 赵锦一, 宋雷, 周志光. 考虑SSI效应的核电厂SSC耦合体系模型主余震易损性分析[J]. 核动力工程, 2023, 44(5): 85-94. doi: 10.13832/j.jnpe.2023.05.0085
Zhao Jinyi, Song Lei, Zhou Zhiguang. Fragility Analysis of Main Aftershock by Nuclear Power Plant SSC Coupling System Model Considering SSI Effect[J]. Nuclear Power Engineering, 2023, 44(5): 85-94. doi: 10.13832/j.jnpe.2023.05.0085
Citation: Zhao Jinyi, Song Lei, Zhou Zhiguang. Fragility Analysis of Main Aftershock by Nuclear Power Plant SSC Coupling System Model Considering SSI Effect[J]. Nuclear Power Engineering, 2023, 44(5): 85-94. doi: 10.13832/j.jnpe.2023.05.0085

考虑SSI效应的核电厂SSC耦合体系模型主余震易损性分析

doi: 10.13832/j.jnpe.2023.05.0085
基金项目: 国家自然科学基金项目(51778491)
详细信息
    作者简介:

    赵锦一(1994—),男,博士研究生,现主要从事核电厂抗震及易损性等方面研究,E-mail: 2010061@tongji.edu.cn

    通讯作者:

    周志光,E-mail: zgzhou@tongji.edu.cn

  • 中图分类号: TL364+.5

Fragility Analysis of Main Aftershock by Nuclear Power Plant SSC Coupling System Model Considering SSI Effect

  • 摘要: 核电厂体系的地震易损性分析能够反映耦合的结构、系统和部件(SSC)在不同地震强度下的失效概率,土-结构相互作用(SSI)和主余震作用是地震易损性分析中2个非常重要的因素。本文建立了AP1000核电厂SSC耦合体系模型,选用典型软岩石地基作为场地条件,根据AP1000设计谱选取主余震记录,采用增量动力分析(IDA)方法对耦合体系模型进行考虑SSI效应的地震易损性分析。经计算分析可知,主余震作用对结构和设备的破坏可能大于单一主震的作用效应。考虑SSI效应普遍增大了SSC主余震易损性的条件失效概率。由典型SSC抗震性能结果可知,耦合体系的失效模式为屏蔽厂房混凝土首先开裂,随后蒸汽发生器管道屈服,最后主蒸汽管道进入屈服。考虑SSI效应时,破坏状态基本完好与一般破坏之间的极限状态下屏蔽厂房、蒸汽发生器、管道的高置信度低失效概率(HCLPF)值分别为0.48g、0.68g和0.92g。由本文研究可知,在核电厂易损性评估过程中,SSI效应和主余震作用的影响不容忽视。

     

  • 图  1  AP1000核电厂剖面图[15]

    SG—蒸汽发生器;Pipe—主蒸汽管道;ASB—屏蔽厂房;SCV—安全壳;CIS—内部结构

    Figure  1.  Section View of AP1000 Nuclear Power Plant

    图  2  耦合体系模型简图

    Figure  2.  Sketch of Coupled System Model

    图  3  剪切模型骨架曲线

    Figure  3.  Skeleton Curves of Shear Model

    图  4  AP1000核电厂SSC耦合体系有限元模型及关键节点

    Figure  4.  AP1000 Nuclear Power Plant SSC Coupled System Finite Element Model and Key Nodes

    图  5  屏蔽厂房水平方向相对位移时程

    Figure  5.  Relative Displacement of Shield Building in Horizontal Direction

    图  6  水平向加速度反应谱

    Figure  6.  Horizontal Acceleration Response Spectra

    图  7  蒸汽发生器峰值加速度响应比值

    Figure  7.  Peak Acceleration Ratio of Steam Generator

    图  8  主蒸汽管道最大应力

    Figure  8.  Maximum Stress of Main Steam Pipe

    图  9  IDA易损性分析方法流程图

    Figure  9.  Flow Chart of IDA Fragility Analysis Method

    图  10  典型SSC易损性曲线

    虚线—不考虑SSI;实线—考虑SSI

    Figure  10.  Fragility Curves for Typical SSC

    表  1  软岩石场地土层参数

    Table  1.   Parameters of Soft Rock Site Soil Layer

    层号 土层类型 厚度/m 剪切波速Vs/(m·s−1) 密度/(kg·m−3)
    1 砂土-1 3.048 640.09 2082.42
    2 砂土-1 3.048 655.33 2082.42
    3 砂土-2 3.048 670.57 2082.42
    4 砂土-2 3.048 685.81 2082.42
    5 砂土-2 3.048 701.05 2082.42
    6 软岩-1 3.048 1303.03 2082.42
    7 软岩-1 3.048 1316.73 2082.42
    8 软岩-1 3.048 1330.45 2162.51
    9 软岩-1 3.048 1344.16 2162.51
    10 软岩-1 3.048 1357.89 2162.51
    11 软岩-1 3.048 1371.61 2162.51
    12 软岩-1 3.048 1383.80 2162.51
    13 软岩-2 3.048 1402.09 2162.51
    14 软岩-2 3.048 1426.47 2162.51
    15 软岩-2 3.048 1447.81 2162.51
    16 软岩-2 3.048 1463.05 2162.51
    下载: 导出CSV

    表  2  地震动序列信息

    Table  2.   Main Aftershock Motion Sequence

    序号 地震动事件 台站 编号 震级 Vs-30/(m·s−1)
    1 Chi-Chi TCU059 1498 7.62 272.67
    2378 5.90
    2 Northridge Csataic-Old 963 6.69 450.28
    1652 6.05
    3 Northridge Jensen Filter Plant 983 6.69 525.79
    1704 5.28
    4 Northridge LA-Baldwin HilDS 985 6.69 297.07
    1706 5.28
    5 Northridge LA-Century City 998 6.69 277.98
    1707 5.28
    6 Northridge LA-Century City 990 6.69 365.22
    1708 5.28
    7 Northridge LA-Hollywood 995 6.69 316.46
    1660 6.05
    8 Northridge Newhall-
    Fire Sts
    1044 6.69 269.14
    1721 5.28
    9 Northridge Santa Monica 1077 6.69 336.20
    1730 5.28
    10 Northridge Tarzana-
    Ceder Hill
    1087 6.69 257.21
    1739 5.28
    下载: 导出CSV

    表  3  耦合体系模型频率与振型信息

    Table  3.   Frequency and Vibration Mode of Coupled System Model

    模态序号 频率/Hz 振型
    1 3.51 屏蔽厂房X方向一阶水平位移
    3 3.89 屏蔽厂房Y方向一阶水平位移
    4 4.82 蒸汽发生器X方向一阶水平位移
    7 6.14 安全壳X方向一阶水平位移
    12 7.18 安全壳Y方向一阶水平位移
    13 7.66 蒸汽发生器Y方向一阶水平位移
    16 8.17 蒸汽发生器Z方向一阶竖直位移
    21 12.25 内部结构X方向一阶水平位移
    22 13.03 内部结构Y方向一阶水平位移
    下载: 导出CSV

    表  4  典型SSC破坏状态及指标划分

    Table  4.   Classification of Typical SSC Damage States

    名称 破坏状态 描述 破坏指标范围
    屏蔽厂房底部单元横向相对位移 DS0 结构无开裂 <0.647 mm
    DS1 混凝土开裂 0.647~4.151 mm
    DS2 内部钢筋屈服 4.151~14.993 mm
    蒸汽发生器最大应力 DS0 内部管道
    弹性变形
    <259 MPa
    DS1 内部管道屈服 259~668 MPa
    DS2 内部管道破裂 >668 MPa
    主蒸汽管道最大应力 DS0 管道弹性变形 <300 MPa
    DS1 管道屈服 300~465 MPa
    DS2 管道破裂 >465 MPa
      DS0—基本完好;DS1—一般破坏;DS2—严重破坏
    下载: 导出CSV

    表  5  典型SSC易损性曲线参数

    Table  5.   Parameters of Fragility Curves for Typical SSC

    SSC名称 极限状态 不考虑SSI 考虑SSI βU
    Am βR Am βR
    屏蔽厂房 LS1 1.56g 0.27 1.24g 0.33 0.25
    LS2 4.61g 0.27 3.90g 0.33 0.25
    蒸汽发生器 LS1 2.51g 0.34 2.01g 0.37 0.40
    LS2 6.94g 0.34 4.97g 0.37 0.40
    主蒸汽管道 LS1 2.92g 0.35 2.31g 0.40 0.40
    LS2 4.63g 0.35 3.54g 0.40 0.40
    下载: 导出CSV
  • [1] EPRI. Seismic probabilistic risk assessment implementation guide: EPRI-1002989[R]. Palo Alto: EPRI, 2009.
    [2] 王晓磊,吕大刚. 核电厂地震概率风险评估研究综述[J]. 土木工程学报,2016, 49(11): 52-68. doi: 10.15951/j.tmgcxb.2016.11.007
    [3] YUN C B, SON E J. Floor response spectra with structure-equipment interaction effects by a random vibration approach[J]. KSCE Journal of Civil and Environmental Engineering Research, 1991, 11(1): 37-43.
    [4] ZHU L H, YANG Y H, GUO X, et al. Seismic performance levels and fortification objects of structure-equipment coupled system[C]//International Conference on Consumer Electronics, Communications and Networks. Xianning, China: IEEE, 2011: 5203-5206.
    [5] DANG Y, XIE P F. Analysis of floor response spectrum influencing factors of isolated structure-equipment coupled system[J]. Journal of Lanzhou University of Technology, 2021, 47(6): 108-114.
    [6] HERNRIED A G, SACKMAN J L. Tertiary systems[J]. Earthquake Engineering & Structural Dynamics, 1985, 13(4): 467-479.
    [7] LUO L F, JIANG N, BI J H. Analysis of the effects of soil on the seismic energy responses of an equipment-structure system via substructure shaking table testing[J]. Shock and Vibration, 2019, 2019: 4351329.
    [8] 苏经宇,周锡元,樊水荣,等. 计算楼层上设备地震作用的方法[J]. 地震工程与工程振动,1990, 10(2): 65-72. doi: 10.13197/j.eeev.1990.02.007
    [9] 孙增寿,陈淮,李杰. 结构-设备复合复合系统振动特性研究[J]. 工业建筑,1997, 27(2): 21-25. doi: 10.13204/j.gyjz1997.02.006
    [10] 李杰,陈淮,孙增寿. 结构-设备动力相互作用试验研究[J]. 工程力学,2003, 20(1): 157-161,85. doi: 10.3969/j.issn.1000-4750.2003.01.031
    [11] ASHIQUZZAMAN M, HONG K J. Simplified model of soil-structure interaction for seismically isolated containment buildings in nuclear power plant[J]. Structures, 2017, 10: 209-218. doi: 10.1016/j.istruc.2016.09.014
    [12] 李小军,王晓辉,贺秋梅,等. 非基岩核电厂结构地震响应振动台试验研究[J]. 核动力工程,2017, 38(4): 31-35. doi: 10.13832/j.jnpe.2017.04.0031
    [13] 于晓辉,乔雨蒙,代旷宇,等. 主余震序列作用下非线性单自由度体系的增量损伤分析[J]. 工程力学,2019, 36(3): 121-130.
    [14] CHEN W R, ZHANG Y S, WANG D Y. Damage development analysis of the whole nuclear power plant of AP1000 type under strong Main-aftershock sequences[J]. Nuclear Engineering and Design, 2021, 371: 110975. doi: 10.1016/j.nucengdes.2020.110975
    [15] SCHULZ T L. Westinghouse AP1000 advanced passive plant[J]. Nuclear Engineering and Design, 2006, 236(14-16): 1547-1557. doi: 10.1016/j.nucengdes.2006.03.049
    [16] EPRI. Program on technology innovation: validation of CLASSI and SASSI codes to treat seismic wave incoherence in soil-structure interaction (SSI) analysis of nuclear power plant structures: EPRI-1015111[R]. Palo Alto: EPRI, 2007.
    [17] Westinghouse Electric Company LLC. Westinghouse AP1000 design control document: ML11171A500[R]. Rockville, Maryland: United States Nuclear Regulatory Commission, 2011.
    [18] LI C H, ZHAI C H, KUNNATH S, et al. Methodology for selection of the most damaging ground motions for nuclear power plant structures[J]. Soil Dynamics and Earthquake Engineering, 2019, 116: 345-357. doi: 10.1016/j.soildyn.2018.09.039
    [19] PARK Y J, HOFMAYER C H. Technical guidelines for aseismic design of nuclear power plants: BNL-NUREG-52422[R]. Washington: U. S. Nuclear Regulatory Commission, 1994.
    [20] 路燕,初起宝,徐宇,等. 核动力厂蒸汽发生器模态分析[J]. 核安全,2018, 17(4): 37-43. doi: 10.16432/j.cnki.1672-5360.2018.04.007
    [21] COLEMAN J L, BOLISETTI C, WHITTAKER A S. Time-domain soil-structure interaction analysis of nuclear facilities[J]. Nuclear Engineering and Design, 2016, 298: 264-270. doi: 10.1016/j.nucengdes.2015.08.015
    [22] EPRI. Seismic fragility application guide: EPRI-1002988[R]. Palo Alto: EPRI, 2002.
    [23] EPRI. Seismic fragility applications guide update: EPRI-1019200[R]. Palo Alto: EPRI, 2009.
    [24] EPRI. Methodology for developing seismic fragilities: EPRI-103959[R]. Palo Alto: EPRI, 1994.
    [25] ZHAI C H, BAO X, ZHENG Z, et al. Impact of aftershocks on a post-mainshock damaged containment structure considering duration[J]. Soil Dynamics and Earthquake Engineering, 2018, 115: 129-141. doi: 10.1016/j.soildyn.2018.08.013
    [26] DONG D Q, CHEN F, CUI Z S. A physically-based constitutive model for SA508-III steel: modeling and experimental verification[J]. Materials Science and Engineering:A, 2015, 634: 103-115. doi: 10.1016/j.msea.2015.03.036
    [27] CHAUDHARI R, INGLE A. Finite element analysis of dissimilar metal weld of SA335 P11 and SA312 TP304 formed by transition grading technique[J]. Materials Today:Proceedings, 2018, 5(2): 7972-7980. doi: 10.1016/j.matpr.2017.11.481
    [28] ANDERSEN V M. Seismic probabilistic risk assessment implementation guide: EPRI-3002000709[R]. Palo Alto: EPRI, 2013.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  38
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2023-05-15
  • 刊出日期:  2023-10-13

目录

    /

    返回文章
    返回