高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ACP100S浮动核电站碰撞冲击响应研究

王东辉 李庆 张晏铭 曾庆娜 董磊磊

王东辉, 李庆, 张晏铭, 曾庆娜, 董磊磊. ACP100S浮动核电站碰撞冲击响应研究[J]. 核动力工程, 2023, 44(5): 95-103. doi: 10.13832/j.jnpe.2023.05.0095
引用本文: 王东辉, 李庆, 张晏铭, 曾庆娜, 董磊磊. ACP100S浮动核电站碰撞冲击响应研究[J]. 核动力工程, 2023, 44(5): 95-103. doi: 10.13832/j.jnpe.2023.05.0095
Wang Donghui, Li Qing, Zhang Yanming, Zeng Qingna, Dong Leilei. Study on Shock Response of ACP100S Floating Nuclear Power Plant Subjected to Ship Collision[J]. Nuclear Power Engineering, 2023, 44(5): 95-103. doi: 10.13832/j.jnpe.2023.05.0095
Citation: Wang Donghui, Li Qing, Zhang Yanming, Zeng Qingna, Dong Leilei. Study on Shock Response of ACP100S Floating Nuclear Power Plant Subjected to Ship Collision[J]. Nuclear Power Engineering, 2023, 44(5): 95-103. doi: 10.13832/j.jnpe.2023.05.0095

ACP100S浮动核电站碰撞冲击响应研究

doi: 10.13832/j.jnpe.2023.05.0095
基金项目: 国家重点研发计划(2017YFC0307800)
详细信息
    作者简介:

    王东辉(1986—),男,高级工程师,主要从事浮动式核电研发、反应堆结构力学分析,E-mail: wangdh666@126.com

  • 中图分类号: TL334

Study on Shock Response of ACP100S Floating Nuclear Power Plant Subjected to Ship Collision

  • 摘要: 船舶撞击是浮动核电站核动力装置设计中的重要外部事件,对其安全性存在重大影响。本文基于核动力商船的碰撞设计研究历史,建立了适用于船舶碰撞分析的数值模拟方法并与已有试验结果进行了对比验证,利用本方法对不同场景下补给船撞击ACP100S浮动核电站进行了仿真模拟,得到了船首撞击和舷侧撞击过程中浮动核电站关键设备处的冲击响应。计算分析结果表明,舷侧撞击过程关键设备的加速度响应大于核动力商船的设计基准载荷1g。本文研究对浮动核电站船体以及反应堆关键设备的抗冲击设计具有一定的指导意义。

     

  • 图  1  ASIS碰撞试验有限元模型

    Figure  1.  Finite Element Model of ASIS Test

    图  2  试验与仿真的碰撞力-撞深曲线对比

    Figure  2.  Comparison of Collision Force virus Penetration for Test and Simulation

    图  3  舷侧模型变形

    Figure  3.  Deformation of Broadside Model

    图  4  ACP100S示意图及有限元模型

    Figure  4.  Illustration of ACP100S and Its Finite Element Model         

    图  5  船首撞击有限元模型

    Figure  5.  Finite Model for Bow-collision Scenario

    图  6  舷侧撞击有限元模型

    Figure  6.  Finite Model for Broadside-collision Scenario

    图  7  船首撞击有限元模型能量守恒验证

    Figure  7.  Verification of Energy Conservation for Bow-collision Scenario

    图  8  碰撞结束时刻浮动核电站舷侧结构变形

    Figure  8.  Deformation of FNPP Side Structure after Collision

    图  9  船首撞击下补给船Y方向碰撞力

    Figure  9.  Collision Force of Supply Ship in Y Direction (Bow-collision Scenario)

    图  10  船首撞击下加速度计不同方向加速度时程

    Figure  10.  Acceleration Time History of the Accelerometer Element in Different Directions (Bow-collision Scenario)

    图  11  舷侧撞击有限元模型能量守恒验证

    Figure  11.  Verification of Energy Conservation for Side-collision Scenario

    图  12  舷侧撞击下补给船Y方向碰撞力

    Figure  12.  Collision Force of Supply Ship in Y Direction (Side-collision Scenario)

    图  13  舷侧撞击下加速度计不同方向加速度时程

    Figure  13.  Acceleration Time History of the Accelerometer Element in Different Directions (Side-collision Scenario)

  • [1] 张煜. 国内外浮动式核电站发展现状的研究[J]. 中国新技术新产品,2020(1): 131-132. doi: 10.3969/j.issn.1673-9957.2020.01.071
    [2] 国家核安全局. 浮动核动力装置设计中所选择的外部事件(试行): NNSA-HAJ-0002-2018[S]. 北京: 国家核安全局, 2018: 9-10.
    [3] KRAMER A W. Nuclear propulsion for merchant ships[M]. Washington: ‎U. S. Atomic Energy Commission, 1962: 244-256.
    [4] 吴伟国,王天琦,郭君,等. 20000 t浮动核电站驳船与补给船碰撞计算分析[J]. 船舶,2016, 27(5): 33-43.
    [5] 程方训,孙海军,刘磊. 海上浮动核电站压力容器DDAM抗冲击计算[J]. 舰船科学技术,2019, 41(5): 108-111.
    [6] 谭美,郭健,郭翔,等. 海上浮动核电站堆舱碰撞安全研究[J]. 舰船科学技术,2019, 41(15): 85-89.
    [7] Sayres and Associates Corporation. N.S. Savannah: updated final safety analysis report: STS-004-002[R]. Washington DC: U.S. Department of Transportation, Maritime Administration, Office of Ship Disposal, 2011.
    [8] DODD J A, MACDONALD S. Collision considerations in the design and construction of the “Savannah”[J]. The Motor Ship, 1960, 41(484): 333-335.
    [9] ANDO Y. Safety evaluation of the first nuclear ship in Japan[J]. Nuclear Engineering and Design, 1969, 10(2): 243-249. doi: 10.1016/0029-5493(69)90043-0
    [10] READE IV J M. Design criteria for nuclear powered merchant ships[D]. Cambridge: Massachusetts Institute of Technology, 1969.
    [11] PAIK J K. Practical techniques for finite element modelling to simulate structural crashworthiness in ship collisions and grounding (part II: verification)[J]. Ships and Offshore Structures, 2007, 2(1): 81-85. doi: 10.1533/saos.2006.0149
    [12] PAIK J K. Practical techniques for finite element modeling to simulate structural crashworthiness in ship collisions and grounding (part I: theory)[J]. Ships and Offshore Structures, 2007, 2(1): 69-80. doi: 10.1533/saos.2006.0148
    [13] 高震. 船舶碰撞数值仿真技术与FPSO船侧耐撞结构研究[D]. 上海: 上海交通大学, 2003.
    [14] LS‐DYNA® Aerospace Working Group. Modeling guidelines document[EB/OL]. (2022-06-20)[2022-09-08]. https://awg.ansys.com/tiki-download_file.php?fileId=2173.
    [15] 江华涛. 船舶碰撞与缓冲船艏结构研究[D]. 上海: 上海交通大学, 2002.
    [16] OHTSUBO H, KAWAMOTO K, KUROIWA T. Experimental and numerical research on ship collision and grounding of oil tankers[J]. Nuclear Engineering and Design, 1994, 150(2-3): 385-396. doi: 10.1016/0029-5493(94)90158-9
    [17] Lloyd’s Register. Guidance notes for risk based analysis: collisions[Z]. London: Lloyd’s Register Group Limited, 2014.
    [18] Norsok Standard. Design of steel structures: Norsok N-004[S]. Norway: Standard Norway, 2013: 69, 80, 226.
    [19] Det Norske Veritas. Preliminary recommendations for the design, construction and classification of nuclear powered ships[S]. Oslo: Det Norske Veritas, 1960.
    [20] American Bureau of Shipping. Guide for the classification of nuclear ships[S]. New York: American Bureau of Shipping, 1962.
    [21] Germanischer Lloyd. Vorläufige richtlinien für klassifikation und bau von seeschiffen mit kernenergieanlagen[S]. New York: American Bureau of Shipping, 1963.
    [22] Nippon Kaiji Kyokai. Provisional guide for the classification of nuclear ships[S]. Tokyo: Nippon Kaiji Kyokai, 1964.
    [23] Lloyd's Register. Provisional rules for the classification of nuclear ships[S]. London: Lloyd's Register of Shipping, 1965.
    [24] ZINN W H, DIETRICH J R. Design practice: The N. S. savannah[J]. Power Reactor Technology, 1962, 6(1): 43-54.
    [25] YOSHIO NAGATO. Construction of the nuclear ship “Mutsu”[J]. Journal of the Marine Engineering Society in Japan, 1972, 7(12): 897-904. doi: 10.5988/jime1966.7.12_897
    [26] SHIGERU NARA. Crashworthy structure of the nuclear ship “Mutsu”[J]. Bulletin of the Society of Naval Architects of Japan, 1971, 500: 57-61.
  • 加载中
图(13)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  346
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-08
  • 修回日期:  2023-05-12
  • 刊出日期:  2023-10-13

目录

    /

    返回文章
    返回