Fast Determination of Containment Leakage Rate Based on Pressure Rise Monitoring
-
摘要: 提出了一种适用于机组启动阶段的安全壳泄漏快速判断的定性和定量方法。基于机组启动期间24 h内安全壳压力的上升趋势,将设定的泄漏率限值作为假设泄漏率,根据理想气体状态方程和安全壳内气体质量平衡关系,获得计算压升,通过计算压升与监测压升的对比定性判断泄漏情况。定量法则依据安全壳内的气体质量平衡关系,反求出与监测压升相匹配的安全壳泄漏率。运用上述方法,对某核电厂5台机组的安全壳泄漏率进行分析,定性判断结果显示,仅一台机组在启动阶段的泄漏率超过5 Nm3/h(Nm3为0℃、1个标准大气压下的气体体积)的限值。定量计算结果显示,该机组的泄漏率为5.11 Nm3/h,与第一个日泄漏率4.98 Nm3/h较为接近,说明本文提出的方法有较好精度。Abstract: In this paper, a qualitative and quantitative method for fast determination of containment leakage at the start-up stage of the unit is proposed. Based on the rising trend of containment pressure within 24 h during the unit start-up, the set leakage rate limit is taken as the assumed leakage rate, and the calculated pressure rise is obtained according to the ideal gas state equation and the gas mass balance relationship in the containment, and the leakage situation is qualitatively determined by comparing the calculated pressure rise with the monitored pressure rise. According to the gas mass balance relationship in the containment, the quantitative method can reversely solve the containment leakage rate matching with the monitoring pressure rise. Using the above method, the containment leakage rate of five units in a nuclear power plant is analyzed. The qualitative determination results show that the leakage rate of only one unit exceeds the limit of 5 Nm3/h (Nm3 is the gas volume at 0℃ and 1 standard atmospheric pressure). The quantitative calculation results show that the leakage rate of the unit is 5.11 Nm3/h, which is close to the first daily leakage rate of 4.98 Nm3/h, indicating that the method proposed in this paper has good accuracy.
-
Key words:
- Containment /
- Leakage rate /
- Pressure monitoring /
- Unit start-up /
- Fast determination
-
表 1 安全壳内监视参数
Table 1. Monitoring Parameters in Containment
机组编号 T0h/K H0h/% P0h/mbar T24h/K H24h/% P24h/mbar msar/kg 1 301.2 19.0 1031.56 304.7 22.1 1049.73 199.1 2 298.2 20.2 1019.99 302.7 21.7 1041.12 183.9 3 299.2 13.5 1045.96 302.1 15.6 1060.21 184.3 4 300.4 34.0 1037.79 304.0 34.6 1054.38 186.4 5 299.6 47.0 1020.15 305.6 36.0 1044.68 211.9 表 2 共用过程参数
Table 2. Common Process Parameters
机组编号 $ \Delta {m_{{\text{a}},{\text{al}}}}/{\text{kg}} $ $ {m_{{\text{a}},{\text{0h}}}}/{\text{kg}} $ 1 18.1 58537.8 2 6.2 58505.6 3 22.6 59910.8 4 20.0 58760.8 5 23.3 57685.0 表 3 定性判断结果
Table 3. Qualitative Determination Results
机组编号 ∆P/mbar ∆P'/mbar 是否超限 1 18.17 17.24 否 2 21.13 20.52 否 3 14.25 12.95 否 4 16.59 17.08 是 5 24.53 23.45 否 表 4 泄漏率定量判断结果
Table 4. Quantitative Determination Results of Leakage Rate
机组编号 泄漏率/(Nm3·h−1) 考虑气闸间换气 未考虑气闸间换气 长期监测值 1 0.55 −1.92 −0.03 2 2.10 −0.45 0.13 3 −0.85 −2.50 −0.35 4 −5.11 −6.50 −3.6/−4.98① 5 −1.20 −3.09 −0.26 注:①运行中断前第一个日泄漏率 -
[1] 朱建斌,刘晓龙. 核电厂安全壳内温度变化对泄漏率测量的影响[J]. 产业与科技论坛,2020, 19(19): 57-58. [2] 褚英杰,欧阳钦. 安全壳整体泄漏率计算方法的比较分析[J]. 核动力工程,2010, 31(6): 33-37. [3] 章春伟,杨永灯,乔宇,等. 安全壳泄漏率在线监测系统原理及数据分析[J]. 核安全,2014, 13(2): 55-60. [4] 梁斌,王雷,韩正. 浅谈CPR1000新建机组安全壳日常泄漏率异常频发原因及预防措施[J]. 科技视界,2016(6): 127,136. [5] 刘跃锋,刘祖伦,杨峰,等. 安全壳泄漏率在机组启动阶段的超限分析及处理[J]. 中国核电,2017, 10(3): 399-404. [6] WANG H, LIU J Q, XIE G Y, et al. A method of containment leakage rate estimation based on convolution neural network[J]. Frontiers in Energy Research, 2021, 9: 637283. doi: 10.3389/fenrg.2021.637283 [7] 李晓庚. 核电站安全壳泄漏率计算模型与分析[J]. 科技创新导报,2015(36): 153-154. [8] 何锐,贾武同,赵健. 安全壳泄漏率测量仪表体积权重分配方法研究[J]. 核动力工程,2015, 36(6): 101-104.