Development of Transient Computational Model for Stirling Engine Used in Liquid Metal Reactor
-
摘要: 为了探究斯特林发动机与液态金属反应堆的匹配运行特性,基于斯特林循环三阶模型开发了一套可用于斯特林发动机运行模拟的瞬态程序。该程序模型采用一维流体力学方法对斯特林发动机工作腔及换热器进行建模,对在液态金属反应堆中运行的斯特林发动机进行模拟。本文首先利用GPU-3斯特林发动机试验数据对定壁温边界条件进行稳态运行模拟,结果显示与试验数据符合良好。接入换热器求解模块后,在定边界条件和变边界条件下程序均成功实现了对斯特林发动机的瞬态模拟,表明该模型可用于液态金属反应堆与斯特林发动机耦合系统的工况分析。Abstract: In order to explore the matching characteristics of the Stirling engine and the liquid metal nuclear reactor, a transient code for Stirling engine operation simulation is developed based on the Stirling cycle third-order analysis method. In this model, the working cavity and the heat exchanger of Stirling engine are modeled by the one-dimensional hydrodynamics method, and the simulation of operating Stirling engine in the liquid metal nuclear reactor is realized. In this paper, the steady state operation of the fixed wall temperature boundary condition is simulated by using the test data of GPU-3 Stirling engine, and the results show good agreement with the test data. After connecting to the heat exchanger solver module, the code has successfully realized the transient simulation of the Stirling engine under constant and transient boundary conditions. This indicates that the model can be used for the working condition analysis of the coupling system between the liquid metal nuclear reactor and the Stirling engine.
-
Key words:
- Stirling engine /
- Transient simulation /
- Liquid metal reactor
-
表 1 GPU-3在2.8 MPa、650℃工况下的输出功率比较
Table 1. Comparison of Output Power of GPU-3 at 2.8 MPa and 650℃
表 2 不同运行压力下的出口温度和输出功率
Table 2. Outlet Temperature and Output Power under Different Operating Pressures
运行压力/MPa 加热器钠侧出口
平均温度/℃输出功率/kW 10.5 461.10 6.09 11.5 457.81 6.60 12.5 454.61 7.09 13.5 451.47 7.57 14.5 448.33 8.03 -
[1] 金东寒. 斯特林发动机技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2009: 1-12. [2] MARTINI W R. Stirling engine design manual: NASA CR-135382[R]. Seattle: Washington University, 1978. [3] BEALE W T. Free piston Stirling engines-some model tests and simulations: 690230[R]. Pittsburgh: SAE, 1969. [4] SCHMIDT G. The theory of Lehmann's calorimetric machine[J]. Zeitschrift Des Vereines Deutscher Ingenieure, 1871, 15(1): 98-112. [5] FINKELSTEIN T. Thermodynamic analysis of Stirling engines[J]. Journal of spacecraft and rockets, 1967, 4(9): 1184-1189. doi: 10.2514/3.29049 [6] URIELI I, BERCHOWITZ D M. Stirling cycle engine analysis[M]. Bristol: A. Hilger, 1984: 20-123. [7] FINKELSTEIN T. Computer analysis of Stirling engines[J]. Advances in Cryogenic Engineering, 1975, 20: 269-282. [8] URIELI I, RALLIS C J, BERCHOWITZ D M. Computer simulation of Stirling cycle machines[C]. Washington, DC.: 12th Intersociety Energy Conversion Engineering Conference, USA. 1977, 2: 1512-1521 [9] ZHU S W, MATSUBARA Y. A numerical method of regenerator[J]. Cryogenics, 2004, 44(2): 131-140. doi: 10.1016/j.cryogenics.2003.10.002 [10] BOROUJERDI A A, ASHRAFIZADEH A, NAEENIAN S M M. Numerical analysis of stirling type pulse tube cryocoolers[J]. Cryogenics, 2011, 51(9): 521-529. doi: 10.1016/j.cryogenics.2011.06.008 [11] WANG K, DUBEY S, CHOO F H, et al. A transient one-dimensional numerical model for kinetic Stirling engine[J]. Applied Energy, 2016, 183: 775-790. doi: 10.1016/j.apenergy.2016.09.024 [12] QIU H, WANG K, YU P F, et al. A third-order numerical model and transient characterization of a β-type Stirling engine[J]. Energy, 2021, 222: 119973. doi: 10.1016/j.energy.2021.119973 [13] GEDEON D. Sage user’s guide[M]. 12th ed. Athens: Gedeon Associates, 2021: 105-343. [14] AHMED F, HUANG H L, AHMED S, et al. A comprehensive review on modeling and performance optimization of Stirling engine[J]. International Journal of Energy Research, 2020, 44(8): 6098-6127. doi: 10.1002/er.5214 [15] THIEME L G. Low-power baseline test results for the GPU 3 Stirling engine: NASA-TM-79103[R]. Cleveland: Lewis Research Center. 1979. [16] TIMOUMI Y, TLILI I, BEN NASRALLAH S. Performance optimization of stirling engines[J]. Renewable Energy, 2008, 33(9): 2134-2144. doi: 10.1016/j.renene.2007.12.012