Design and Process Validation of Non-planar Annular Linear Array Cylindrical Guided Wave Transducer
-
摘要: 为实现辐射控制区T形凸台端面核安全级紧固件的在线检测,本文采用COMSOL软件对M56 mm×416 mm紧固件内柱面导波进行模拟仿真,设计开发了非平面环形线阵柱面导波换能器,并在设计加工人工反射体的模拟试块上进行工艺验证。结果表明,高频段柱面导波频散曲线趋于一致,T形高低台阶延时激励方式和晶片内径32 mm、外径50 mm尺寸设计的声场响应最优,可有效检出深度1 mm的人工刻槽,且深度误差在±2 mm以内。本文设计开发的非平面环形线阵柱面导波换能器可实现辐射控制区紧固件高效便携的在线检测。Abstract: In order to realize online detection of nuclear safety level fasteners on T-boss end face in radiation control area, the cylinder guided wave in M56 mm×416 mm fastener is simulated using COMSOL software. The non-planar annular linear array cylindrical guided wave transducer is designed and developed, and the process validation is carried out on the simulation test block for designing and processing artificial reflectors. The results show that the dispersion curve of high frequency cylindrical guided wave tends to be consistent, and the T-shaped high-low step delayed excitation mode and the design of the chip size of 32 mm inner diameter and 50 mm outer diameter have optimal sound field response, which can effectively detect artificial grooves with a depth of 1 mm, and the depth error is within ±2 mm. The non-planar annular linear array cylindrical guided wave transducer designed and developed in this paper can realize efficient and portable on-line detection of fasteners in radiation control area.
-
Key words:
- T-boss /
- Phased array /
- Cylindrical guided wave /
- Online detection /
- Delayed excitation
-
表 1 晶片尺寸影响参数
Table 1. Parameters of Chip Size Influence
序号 d/mm D/mm 高台覆盖
角度低台覆盖
角度晶片覆盖面积/
mm21 32 50 0°~15° 50°~90° 209.31 2 36 50 0°~15° 56°~90° 186.50 3 40 50 0°~15° 60°~90° 147.26 表 2 检测工艺参数
Table 2. Detection Process Parameters
序号 项目 参数设置 1 时基调节 底波A扫信号位于满屏高度80% 2 检测灵敏度 缺陷7信号幅值位于满屏高度20% 3 聚焦方式 动态聚焦 4 检测声速 5830 m/s(实测) 5 检测频率 5 MHz 6 晶片尺寸 内径32 mm、外径50 mm 7 成像模式 A扫+周向B扫+环形C扫 8 脉冲频率 500 Hz 表 3 紧固件模拟试块人工反射体检测结果
Table 3. Test Results of Artificial Reflector of Fastener Simulation Test Block
人工反射体
序号布置高度/
mm布置中心
角度直切槽深度/
mm检出高度偏差/
mm1 58 0° 2 +2 2 58 115° 2 +2 3 136 250° 1 +1 4 213 200° 1 +1 5 302 70° 1 −1 6 360 295° 2 −1 7 360 180° 2 +2 布置高度—以低台阶端面为距离起始;布置中心角度—缺陷1的中心位置为起始角度,顺时针增大 -
[1] 王晓翔,常楠,孙茂荣,等. 核反应堆压力容器主螺栓、主螺母涡流检测技术[J]. 无损探伤,2015, 39(1): 25-27. [2] 苗学良,张福海,王欣,等. 核电厂循环水泵盘根压盖螺栓断裂原因[J]. 理化检验(物理分册),2021, 57(5): 71-75. [3] 陈涛,刘攀,徐晓. 反应堆压力容器主螺栓螺纹疲劳分析方法[J]. 压力容器,2018, 35(2): 24-28. [4] 冯俊,高继峰. 核电站反应堆压力容器主螺栓涡流检测常见缺陷及噪声[J]. 无损检测,2019, 41(7): 9-11,18. [5] 马官兵,肖学柱,袁书现. 反应堆压力容器主螺栓超声波检测技术[J]. 无损检测,2010, 32(10): 770-772. [6] 林百涛,周帆,丁松,等. 核电厂主螺栓内孔超声检查技术研究[J]. 科技视界,2020(17): 112-117. [7] 李田,严海,尹芹. RSE-M规范与ASME规范Ⅺ卷在役无损检测方法对比分析[J]. 钢管,2019, 48(6): 70-73. [8] 吴伟帮,张进,刘飞华. RCC-M及RSE-M规范核岛机械设备无损检验要求的比较[J]. 压力容器,2017, 34(2): 51-56,73. [9] 王磊. 在役风电螺栓的相控阵超声检测[J]. 机械工程与自动化,2020(4): 138-139,142. [10] 付检平,陈新中,潘晴川,等. 典型高温紧固螺栓不拆卸相控阵检测技术研究[J]. 中国特种设备安全,2021, 37(4): 56-60,113. [11] ROSE J L. Recent advances in guided wave NDE[C]//Proceedings of 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium. Seattle: IEEE, 1995: 761-770. [12] ROSE J L, RAJANA K M, CARR F T. Ultrasonic guided wave inspection concepts for steam generator tubing[J]. Materials Evaluation, 1994, 52(2): 307-311. [13] 韩传高,王飞,赵阳,等. P91钢管道受限空间焊缝相控阵超声检测[J]. 热力发电,2021, 50(9): 167-172. [14] 郑晖, 林树青. 超声检测[M]. 第二版. 北京: 中国劳动社会保障出版社, 2008: 20. [15] 岳贤强,姜海波,高超,等. 地脚螺栓相控阵柱面超声导波换能器的设计及应用[J]. 机械制造与自动化,2021, 50(1): 93-95,119.