Precision Validation on the Flaws in Pipe Blocks of Performance Demonstration Inspection for Nuclear Power Plant
-
摘要: 采用射线检测(RT)、超声检测(UT)及解剖测量等方法,对自主研发的管状能力验证(PDI)试块中植入的真实缺陷进行测量,分析植入后的缺陷几何尺寸及位置坐标参数与设计值之间差异。本次检测涉及4种不同规格的试块,共计16处缺陷,均为裂纹。结果表明:试块表面裂纹植入痕迹已完全消除,植入后裂纹形态真实,闭合度较好,且端点清晰,无二次扩展现象。植入后的裂纹与试块母体形成完全冶金结合,植入焊缝无任何异常的信号反射界面或次生缺陷。经RT和UT之后确认缺陷的几何尺寸及位置坐标的平均绝对值偏差小于2.0 mm,经解剖测量,其平均绝对值偏差小于1.0 mm,精度满足核电厂在役检查能力验证的要求。
-
关键词:
- 超声检测(UT) /
- 射线检测(RT);核电厂在役检查 /
- 能力验证 /
- 试块 /
- 真实裂纹
Abstract: The radiographic testing (RT), ultrasonic testing (UT) and anatomical measurement were employed to measure the embodied real flaws in self-developed pipe blocks of performance demonstration inspection (PDI), and the differences between the geometric dimensions and position coordinate parameters of the embodied flaws and the design values were analyzed. The test involved four different specifications of pipe blocks, with a total of 16 defects, all of which are cracks. The results show that the track of embodying weld is eliminated completely, the cracks are featured with natural and high closure, and the tips are distinguishable with no secondary propagation. The embodied crack forms a complete metallurgical bond with the parent body of the block, and there is no abnormal signal reflection interface or secondary flaw in the embodied weld. After RT and UT, it is confirmed that the average absolute value deviation of the geometric size and position coordinates of the defects is less than 2.0 mm, and after anatomical measurement, the average absolute value deviation is less than 1.0 mm. The flaw precision meets the requirement for PDI of nuclear power plant. -
表 1 管状能力验证试块的规格与缺陷设计参数
Table 1. Dimension of Pipe Blocks for PDI and Design Parameters of Flaws
试块编号 尺寸(管径×壁厚)/(mm×mm) 缺陷编号 取向 裂纹长度/mm 裂纹高度/mm 下端距①/mm 周向位置 轴向位置/mm 倾角 G01 Φ355.6×35.7 F1 轴向 18 8 8 55° 12(DS②) 0° F2 周向 55 25 25 135° 7(US②) 10° F3 周向 36 12 12 210° 6(US) 0° F4 周向 8 3 13.3 315° 11.5(DS) 30° G02 Φ457.2×45.2 F1 周向 60 28 28 45° 7(DS) 0° F2 轴向 15 5 18.2 150° 8(DS) 0° F3 周向 16 7 36.2 230° 10(US) 0° F4 周向 40 18 18 345° 5(US) 10° G03 Φ609.6×46.1 F1 周向 15 6 6 40° 4(DS) 35° F2 周向 70 30 30 105° 8(US) 0° F3 周向 32 15 15 230° 12(US) 15° F4 周向 56 25 8.1 300° 0 0° G04 Φ609.6×59.6 F1 周向 105 37 37 30° 10(DS) 0° F2 周向 18 8 8 110° 4(DS) 25° F3 周向 25 12 12 225° 0 0° F4 周向 42 20 20 305° 6(US) 0° 注:①下端距为裂纹高度上沿与管件内壁的距离;②US、DS分别为管内液流的上游和下游 表 2 管状试块缺陷的解剖测量精度偏差
Table 2. Precision Validation of Embodied Flaws in Pipes Blocks by Anatomical Measurement
试块编号 缺陷编号 裂纹长度/mm 裂纹高度/mm 周向位置 轴向位置/mm 倾角 深度/mm G01 F1 1.8 1.9 0.8° 1.4 0 1.9 F2 1.0 1.0 0.2° 1.5 3.7° 1.0 F3 0.3 1.5 0.1° 1.6 0 1.5 F4 0.6 0.4 0.2° 0.5 0.5° 1.3 G02 F1 0.3 0.2 0.6° 0.6 0 0.2 F2 0 0.5 0.3° 1.3 0 0.7 F3 0.8 1.6 1.2° 0 0 0 F4 0.1 0.1 0.6° 0.8 0.4° 0.1 G03 F1 1.0 0.7 0.2° 1.8 0.4° 0.7 F2 0.9 0.2 0.1° 1.3 0 0.2 F3 0.2 0.8 0.2° 0.4 0.3° 0.8 F4 0.4 0.1 0.2° 0.1 0 0.2 G04 F1 1.2 0.2 0.1° 0.4 0 0.2 F2 1.0 0.5 0.1° 0.4 0.6° 0.5 F3 1.2 0.3 0.2° 0.2 0 0.3 F4 1.2 0.2 0.4° 0.1 0 0.2 平均绝对值偏差 0.8 0.6 0.4° 0.8 0.4° 0.6 -
[1] 王臣,孙海涛,高晨,等. M310型核电厂在役检查的改进和优化[J]. 核动力工程,2015, 36(2): 89-92. [2] 杨浩. 核电厂核岛设备在役检查可达性设计分析与应用[J]. 设备管理与维修,2016(7): 15-17. doi: 10.16621/j.cnki.issn1001-0599.2016.07.05 [3] 郗海英,王琪,范岩成. 核电厂风险指引型管道在役检查应用研究[J]. 核科学与工程,2012, 32(S1): 83-90. [4] 齐敦杰,郭亮. 核电厂在役检查技术验证方法对比[J]. 核动力工程,2012, 33(3): 100-103. [5] 王庆武. 核电厂在役检查探讨[J]. 中国核电,2008, 1(2): 156-161. [6] 葛亮,杨勇,徐旭光,等. ASME和RSE-M规范对核电设备役前及在役检查中缺陷分析方法的比较[J]. 无损检测,2017, 39(5): 99-103. [7] 刘奎,欧阳标,李上平. RSE-M与ASME规范中反应堆压力容器焊缝超声波检验技术能力验证试块对比研究[J]. 科技视界,2020(19): 17-22. [8] 卢威,刘云,张志鹏,等. 不锈钢管道焊缝验证试块制作工艺对缺陷超声测长的影响[J]. 无损检测,2019, 41(1): 14-17,52. [9] 吕永飞,李广. AP1000核电机组主管道焊接技术研究[J]. 焊接技术,2017, 46(10): 41-43.