Prediction Model for Growth of Chalk River Unidentified Deposit on the Surface of PWR Fuel Cladding
-
摘要: 为建立压水堆燃料棒包壳表面氧化腐蚀产物沉积层(CRUD)厚度的预测方法,本文以典型压水堆一回路为研究对象,针对压水堆内水化学和物理条件对CRUD沉积的影响,建立了CRUD沉积生长模型。模型预测结果与Sizewell B核电厂实际运行数据相比具有相同的生长量级和趋势,可用于压水堆燃料棒包壳CRUD沉积行为的定量预测。在此基础上,本文研究了热流密度、H2浓度以及Li+浓度对腐蚀产物生长的影响,结果表明:燃料元件表面非沸腾段CRUD厚度受热流密度变化的影响较小,而沸腾段CRUD厚度随热流密度上升而增加;CRUD厚度随着系统H2浓度的提高而增加;提高系统内Li浓度有助于抑制氧化腐蚀产物的沉积。
-
关键词:
- 压水堆 /
- 燃料棒包壳 /
- 氧化腐蚀产物沉积层(CRUD) /
- 沉积生长模型
Abstract: In order to establish a prediction method for the thickness of chalk river unidentified deposit (CRUD) on the surface of PWR fuel cladding, this paper takes the primary circuit of typical PWR as the research object. Aiming at the influence of water chemistry and physical conditions in PWR on CRUD, a deposition model is established. Compared with the actual operation data of Sizewell B nuclear power plant, the predicted results of the model have the same growth order and trend, which indicates that the model can be used to quantitatively predict the thickness of CRUD on the surface of PWR fuel cladding. The effects of heat flux, H2 and Li concentration on the accumulation of corrosion products are studied, the predicted results show that the CRUD thickness of the non-boiling section is less affected by the heat flux, while the CRUD thickness of the boiling section increases with the increase of heat flux. The CRUD thickness increases with the increase of H2 concentration, and the increase of Li concentration in the system is helpful to restrain the deposition of oxidation corrosion products. -
表 1 Sizewell B核电厂一回路参数
Table 1. Parameters of Sizewell B PWR Primary Circuit
参数 数值 污垢密度/(kg·m−3) 1000 冷却剂体积流量/(m3·s−1) 25.9 堆芯高度/m 3.7 燃料表面积/m2 9905 冷却剂流速/(m·s−1) 1.8 堆芯有效直径/m 2.15 堆芯体积/m3 13.2 燃料表面沸腾段比例/% 5 表 2 堆芯各区域温度以及pH值
Table 2. Temperature and pH Values of Core Area
区域编号 温度/℃ pH值 Box1 280 6.80 Box2 300 6.90 Box3 345 7.54 Box4 300 6.90 Box5 345 7.54 Box6 320 7.20 -
[1] 鲍一晨,陈志刚,石秀强,等. 一回路水化学对燃料包壳表面CRUD(污垢)的影响[J]. 腐蚀与防护,2022, 43(10): 1-6,32. [2] 廖家鹏,叶杰,金德升,等. 堆芯功率变化对燃料包壳表面污垢沉积行为的影响研究[J]. 核技术,2022, 45(8): 080605. [3] DESHON J. PWR axial offset anomaly (AOA) guidelines: 1008102[R]. U.S.: EPRI, 2004. [4] DESHON J, HUSSEY D, KENDRICK B, et al. Pressurized water reactor fuel crud and corrosion modeling[J]. JOM, 2011, 63(8): 64-72. doi: 10.1007/s11837-011-0141-z [5] HENSHAW J, MCGURK J C, SIMS H E, et al. A model of chemistry and thermal hydraulics in PWR fuel crud deposits[J]. Journal of Nuclear Materials, 2006, 353(1-2): 1-11. doi: 10.1016/j.jnucmat.2005.01.028 [6] BENNETT P, BEVERSKOG B, SUTHER R. Halden in-reactor test to exhibit PWR axial offset anomaly: 1008106[R]. U.S.: EPRI, 2004. [7] DESHON J. Modeling PWR fuel corrosion product deposition and growth processes:1009734[R]. U.S.:EPRI, 2004. [8] DOBREVSKI I, ZAHARIEVA N. Pressurized water reactor fuel performance problems connected with fuel cladding corrosion processes[C]//International Conference on WWER Fuel Performance, Modelling and Experimental Support, Bulgaria: INIS, 2007: 17-21. [9] 蒙舒祺,胡友森,金德升,等. 一种压水堆燃料污垢行为分析方法及应用[J]. 核科学与工程,2022, 42(5): 989-993. [10] 蒙舒祺,胡友森,李昌莹,等. 压水堆燃料表面污垢密度计算模型及验证[J]. 核科学与工程,2022, 42(2): 274-279.