Experimental Study on Low-Cycle Fatigue Properties of Supercritical Water-cooled Reactor Candidate Cladding Material
-
摘要: 为了获得超临界水冷堆(SCWR)候选包壳材料20Cr-25Ni的低周疲劳性能数据,为SCWR的设计、研发和工程提供技术参考,本文采用MTS809试验机开展了20Cr-25Ni在室温、500℃、650℃、800℃空气环境中的低周疲劳试验,获得了多级循环滞回曲线、循环应力-应变曲线、应力幅与循环分数关系曲线以及循环应力应变模型和低周疲劳Manson-Coffin模型参数。20Cr-25Ni的低周疲劳试验结果表明:随着温度的升高,20Cr-25Ni 不锈钢管材的抗疲劳性能不断下降,在500℃、650℃显示出较明显的循环硬化。因此,在650℃以下该包壳材料具有较好抗疲劳性能,当SCWR堆芯最高温度的设计高于650℃后,使用该材料作为包壳材料需要谨慎。
-
关键词:
- 超临界水冷堆(SCWR) /
- 包壳管 /
- 不锈钢 /
- 低周疲劳 /
- 曲线
Abstract: In order to obtain the low cycle fatigue performance data of 20Cr-25Ni, a candidate cladding material for supercritical water cooled reactor (SCWR), and to provide technical reference for the design, development and engineering of SCWR, the low cycle fatigue tests of 20Cr-25Ni at room temperature, 500℃, 650℃ and 800℃ were carried out on MTS809 testing machine, and the multi-level cyclic hysteresis curve, cyclic stress-strain curve, the relationship curve between stress amplitude and cyclic fraction, cyclic stress-strain model and low cycle fatigue Manson-Coffin model parameters were obtained. The results of low cycle fatigue test of 20Cr-25Ni show that the fatigue resistance of 20Cr-25Ni stainless steel pipe decreases with the increase of temperature, and shows obvious cyclic hardening at 500℃ and 650℃. Therefore, the cladding material has good fatigue resistance below 650℃. When the maximum core temperature of SCWR is higher than 650℃, it is necessary to be careful to use this material as cladding material.-
Key words:
- Supercritical water-cooled reactor (SCWR) /
- Cladding tube /
- Stainless steel /
- Low cycle fatigue /
- Curve
-
表 1 材料化学成分
Table 1. Chemical Composition of Material
元素 Cr Ni Nb Mn Si C 质量分数/% 19.9 24.86 0.601 0.31 0.041 0.017 元素 Ta N P S Fe 质量分数/% 0.001 0.0124 0.0114 0.0017 54.19 表 2 20Cr-25Ni不锈钢管材循环应力应变模型及M-C模型参数
Table 2. Parameters of Cyclic Stress-strain and M-C Models
温度 循环应力应变模型参数 M-C模型参数 K′ n′ $ {\sigma '_{\text{f}}} $ b $ {\varepsilon '_{\text{f}}} $ c 室温 628.070 0.110 705.960 −0.084 1.309 −0.671 500℃ 667.930 0.173 609.991 −0.105 0.538 −0.594 650℃ 721.980 0.192 541.699 −0.099 0.190 −0.490 800℃ 378.104 0.114 267.631 −0.044 0.054 −0.379 -
[1] 肖泽军,李翔,黄彦平,等. 超临界水冷堆技术研发(第一阶段)综述[J]. 核动力工程,2013, 34(1): 1-4,14. [2] 臧金光,黄彦平. 超临界水冷堆研发进展[J]. 核动力工程,2021, 42(6): 1-4. [3] 周禹,张宏亮,李满昌,等. 超临界水冷堆堆内构件选材研究[J]. 核动力工程,2013, 34(1): 60-64. [4] 郑中成,郭立平,唐睿. 超临界水冷堆燃料包壳材料的辐照损伤研究进展[J]. 原子核物理评论,2017, 34(2): 211-218. [5] 熊茹,赵宇翔,乔英杰,等. SCWR候选不锈钢的高周疲劳行为研究[J]. 核动力工程,2013, 34(1): 150-156. [6] 陈乐,唐睿,梁波,等. SCWR候选不锈钢的低周疲劳性能研究[J]. 核动力工程,2013, 34(1): 146-149,156. [7] 陈乐,唐睿,梁波,等. 超临界水冷堆候选高温合金低周疲劳性能研究[J]. 稀有金属材料与工程,2014, 43(4): 922-925. [8] REDDY G V P, SANDHYA R, VALSAN M. High temperature low cycle fatigue properties of 316(N) weld metal and 316L(N)/316(N) weld joints[J]. International Journal of Fatigue, 2008, 30(3): 538-546. doi: 10.1016/j.ijfatigue.2007.03.009 [9] 黄志伟,袁福河,王中光,等. 铸造镍基高温合金M963的高温低周疲劳行为[J]. 金属学报,2007, 43(7): 678-682.