Corrosion Behavior of a Novel Alumina-forming-austenitic Stainless Steel Exposed to Supercritical Water
-
摘要: 为了丰富含铝奥氏体不锈钢(AFAs)在超临界水环境下的腐蚀行为研究数据,支持超临界水冷堆(SCWR)包壳材料评估工作,本研究对自主设计的AFAs进行600℃/25 MPa的超临界水腐蚀实验,结合微观分析表征手段分析其腐蚀行为。结果表明,本研究所用AFAs在腐蚀1000 h后的增重达34 mg/dm2,约为相同条件下的310S钢的腐蚀增重的一半。AFAs表面形成了双层氧化物,外层主要为Fe2O3和富Ni尖晶石,内层主要为Cr2O3。氧化铝以离散的颗粒形式存在于内层,阻碍扩散过程的同时可以作为Cr2O3的形核位点,促进Cr2O3的形成。因此,本研究所用AFAs在该实验条件下表现出优异的耐腐蚀性能。Abstract: In order to enrich the research data on the corrosion behavior of alumina-forming-austenitic stainless steel (AFAs) in the supercritical water environment and provide support for SCWR cladding material evaluation, this study conducted the supercritical water corrosion test at 600℃/25 MPa for the independently designed AFAs, and analyzed its corrosion behavior by combining the microscopic analysis and characterization methods. The results show that the corrosion weight gain of AFAs exposed for 1000 h is 34 mg/dm2, about half of that of 310S steel under the same conditions. There is a double-layer oxide forming on surface of AFAs. The outer layer mainly consists of Fe2O3 and Ni-rich spinel, and the inner layer is mainly composed of Cr2O3. Alumina exists in the layer as discrete particles, hindering the diffusion process and promoting the formation of Cr2O3. Therefore, AFAs in this study showed excellent corrosion resistance.
-
Key words:
- Alumina-forming-austenitic stainless steel /
- Supercritical water /
- Corrosion /
- 310S steel
-
表 1 实验材料的化学成分
Table 1. Chemical Composition of Tested Materials
材料 元素质量分数/% Al Cr Ni Mn Mo Nb Cu Si C Fe AFAs 2.21 18.45 25.64 2.02 4.5 1.04 1.28 0.55 0.06 余量 310S 0.072 24.34 22.97 0.06 0.37 — — 0.06 0.04 余量 表 2 图4b标注区域的EDS点扫结果
Table 2. Point Scanning Results for Marked Area in Fig. 4b
区域 原子百分数/% O Fe Cr Ni Mn A 43.86 33.70 11.66 9.34 1.44 B 45.02 33.53 10.84 9.23 1.38 C 67.52 28.73 1.43 1.67 0.65 -
[1] 黄彦平,臧金光. 超临界水冷堆[J]. 现代物理知识,2018, 30(4): 19-24. doi: 10.13405/j.cnki.xdwz.2018.04.006 [2] SUN C W, HUI R, QU W, et al. Progress in corrosion resistant materials for supercritical water reactors[J]. Corrosion Science, 2009, 51(11): 2508-2523. doi: 10.1016/j.corsci.2009.07.007 [3] COOK W G, OLIVE R P. Pourbaix diagrams for the iron–water system extended to high-subcritical and low-supercritical conditions[J]. Corrosion Science, 2012, 55: 326-331. doi: 10.1016/j.corsci.2011.10.034 [4] MOTTA A T, YILMAZBAYHAN A, DA SILVA M J G, et al. Zirconium alloys for supercritical water reactor applications: Challenges and possibilities[J]. Journal of Nuclear Materials, 2007, 371(1-3): 61-75. doi: 10.1016/j.jnucmat.2007.05.022 [5] SCHULENBERG T, LEUNG L K H. SuperCritical water-cooled reactors[M]//PIORO I L. Handbook of Generation IV Nuclear Reactors. Duxford: Woodhead Publishing, 2016: 189-220. [6] YAMAMOTO Y, BRADY M P, LU Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels[J]. Science, 2007, 316(5823): 433-436. doi: 10.1126/science.1137711 [7] FROITZHEIM J, RAVASH H, LARSSON E, et al. Investigation of chromium volatilization from FeCr interconnects by a denuder technique[J]. Journal of the Electrochemical Society, 2010, 157(9): B1295. doi: 10.1149/1.3462987 [8] BRADY M P, YAMAMOTO Y, SANTELLA M L, et al. The development of alumina-forming austenitic stainless steels for high-temperature structural use[J]. JOM, 2008, 60(7): 12-18. doi: 10.1007/s11837-008-0083-2 [9] YAMAMOTO Y, TAKEYAMA M, LU Z P, et al. Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates[J]. Intermetallics, 2008, 16(3): 453-462. doi: 10.1016/j.intermet.2007.12.005 [10] 李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001: 79-82, 263. [11] ASTEMAN H, SVENSSON J E, JOHANSSON L G, et al. Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873 K in the presence of 10% water vapor[J]. Oxidation of Metals, 1999, 52(1-2): 95-111. [12] CHANG K H, CHEN S M, YEH T K, et al. Effect of dissolved oxygen content on the oxide structure of Alloy 625 in supercritical water environments at 700℃[J]. Corrosion Science, 2014, 81: 21-26. doi: 10.1016/j.corsci.2013.11.034 [13] WAGNER C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys[J]. Journal of the Electrochemical Society, 1952, 99(10): 369. doi: 10.1149/1.2779605 [14] PINT B A, BRADY M P, YAMAMOTO Y, et al. Evaluation of alumina-forming austenitic foil for advanced recuperators[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(10): 102302. doi: 10.1115/1.4002827