高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型含铝奥氏体不锈钢在超临界水环境下的腐蚀行为

孙达云 高阳 张乐福 韩忠立 郭相龙

孙达云, 高阳, 张乐福, 韩忠立, 郭相龙. 新型含铝奥氏体不锈钢在超临界水环境下的腐蚀行为[J]. 核动力工程, 2023, 44(5): 244-250. doi: 10.13832/j.jnpe.2023.05.0244
引用本文: 孙达云, 高阳, 张乐福, 韩忠立, 郭相龙. 新型含铝奥氏体不锈钢在超临界水环境下的腐蚀行为[J]. 核动力工程, 2023, 44(5): 244-250. doi: 10.13832/j.jnpe.2023.05.0244
Sun Dayun, Gao Yang, Zhang Lefu, Han Zhongli, Guo Xianglong. Corrosion Behavior of a Novel Alumina-forming-austenitic Stainless Steel Exposed to Supercritical Water[J]. Nuclear Power Engineering, 2023, 44(5): 244-250. doi: 10.13832/j.jnpe.2023.05.0244
Citation: Sun Dayun, Gao Yang, Zhang Lefu, Han Zhongli, Guo Xianglong. Corrosion Behavior of a Novel Alumina-forming-austenitic Stainless Steel Exposed to Supercritical Water[J]. Nuclear Power Engineering, 2023, 44(5): 244-250. doi: 10.13832/j.jnpe.2023.05.0244

新型含铝奥氏体不锈钢在超临界水环境下的腐蚀行为

doi: 10.13832/j.jnpe.2023.05.0244
基金项目: 国家重点研发计划(2018YFE0116200)
详细信息
    作者简介:

    孙达云(1999—),男,硕士研究生,现主要从事核材料腐蚀方面的研究,E-mail: sundayun2020@sjtu.edu.cn

    通讯作者:

    张乐福,E-mail: lfzhang@sjtu.edu.cn

  • 中图分类号: TG174;TL341

Corrosion Behavior of a Novel Alumina-forming-austenitic Stainless Steel Exposed to Supercritical Water

  • 摘要: 为了丰富含铝奥氏体不锈钢(AFAs)在超临界水环境下的腐蚀行为研究数据,支持超临界水冷堆(SCWR)包壳材料评估工作,本研究对自主设计的AFAs进行600℃/25 MPa的超临界水腐蚀实验,结合微观分析表征手段分析其腐蚀行为。结果表明,本研究所用AFAs在腐蚀1000 h后的增重达34 mg/dm2,约为相同条件下的310S钢的腐蚀增重的一半。AFAs表面形成了双层氧化物,外层主要为Fe2O3和富Ni尖晶石,内层主要为Cr2O3。氧化铝以离散的颗粒形式存在于内层,阻碍扩散过程的同时可以作为Cr2O3的形核位点,促进Cr2O3的形成。因此,本研究所用AFAs在该实验条件下表现出优异的耐腐蚀性能。

     

  • 图  1  超临界水腐蚀系统

    Figure  1.  Supercritical Water Corrosion System

    图  2  实验材料的基体显微组织

    Figure  2.  Matrix Morphology of Tested Materials

    图  3  AFAs和310S钢在超临界水中的腐蚀增重曲线

    R2—拟合优度

    Figure  3.  Weight Gain Curves of AFAs and 310S Steel Exposed to Supercritical Water

    图  4  AFAs在超临界水环境下随腐蚀时间变化的表面形貌

    Figure  4.  Surface Morphology of AFAs Exposed to Supercritical Water for Different Time

    图  5  AFAs腐蚀1000 h后XRD分析结果

    Figure  5.  XRD Results of AFAs Exposed to Supercritical Water for 1000 h

    图  6  AFAs腐蚀1000 h后截面氧化膜形貌

    Figure  6.  Cross-section Oxide Film Morphology of AFAs Exposed to Supercritical Water for 1000 h

    图  7  腐蚀1000 h后AFAs氧化层线扫结果

    Figure  7.  EDS Line Scanning Results of Oxide Scale on AFAs Exposed for 1000 h

    图  8  腐蚀500 h后AFAs外氧化层EDS结果

    Figure  8.  EDS Results of Outer Oxide Scale on AFAs Exposed for 500 h

    图  9  腐蚀500 h后AFAs内氧化层EDS结果

    Figure  9.  EDS Results of Inner Oxide Scale on AFAs Exposed for 500 h

    表  1  实验材料的化学成分

    Table  1.   Chemical Composition of Tested Materials

    材料 元素质量分数/%
    Al Cr Ni Mn Mo Nb Cu Si C Fe
    AFAs 2.21 18.45 25.64 2.02 4.5 1.04 1.28 0.55 0.06 余量
    310S 0.072 24.34 22.97 0.06 0.37 0.06 0.04 余量
    下载: 导出CSV

    表  2  图4b标注区域的EDS点扫结果

    Table  2.   Point Scanning Results for Marked Area in Fig. 4b

    区域 原子百分数/%
    O Fe Cr Ni Mn
    A 43.86 33.70 11.66 9.34 1.44
    B 45.02 33.53 10.84 9.23 1.38
    C 67.52 28.73 1.43 1.67 0.65
    下载: 导出CSV
  • [1] 黄彦平,臧金光. 超临界水冷堆[J]. 现代物理知识,2018, 30(4): 19-24. doi: 10.13405/j.cnki.xdwz.2018.04.006
    [2] SUN C W, HUI R, QU W, et al. Progress in corrosion resistant materials for supercritical water reactors[J]. Corrosion Science, 2009, 51(11): 2508-2523. doi: 10.1016/j.corsci.2009.07.007
    [3] COOK W G, OLIVE R P. Pourbaix diagrams for the iron–water system extended to high-subcritical and low-supercritical conditions[J]. Corrosion Science, 2012, 55: 326-331. doi: 10.1016/j.corsci.2011.10.034
    [4] MOTTA A T, YILMAZBAYHAN A, DA SILVA M J G, et al. Zirconium alloys for supercritical water reactor applications: Challenges and possibilities[J]. Journal of Nuclear Materials, 2007, 371(1-3): 61-75. doi: 10.1016/j.jnucmat.2007.05.022
    [5] SCHULENBERG T, LEUNG L K H. SuperCritical water-cooled reactors[M]//PIORO I L. Handbook of Generation IV Nuclear Reactors. Duxford: Woodhead Publishing, 2016: 189-220.
    [6] YAMAMOTO Y, BRADY M P, LU Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels[J]. Science, 2007, 316(5823): 433-436. doi: 10.1126/science.1137711
    [7] FROITZHEIM J, RAVASH H, LARSSON E, et al. Investigation of chromium volatilization from FeCr interconnects by a denuder technique[J]. Journal of the Electrochemical Society, 2010, 157(9): B1295. doi: 10.1149/1.3462987
    [8] BRADY M P, YAMAMOTO Y, SANTELLA M L, et al. The development of alumina-forming austenitic stainless steels for high-temperature structural use[J]. JOM, 2008, 60(7): 12-18. doi: 10.1007/s11837-008-0083-2
    [9] YAMAMOTO Y, TAKEYAMA M, LU Z P, et al. Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates[J]. Intermetallics, 2008, 16(3): 453-462. doi: 10.1016/j.intermet.2007.12.005
    [10] 李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001: 79-82, 263.
    [11] ASTEMAN H, SVENSSON J E, JOHANSSON L G, et al. Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873 K in the presence of 10% water vapor[J]. Oxidation of Metals, 1999, 52(1-2): 95-111.
    [12] CHANG K H, CHEN S M, YEH T K, et al. Effect of dissolved oxygen content on the oxide structure of Alloy 625 in supercritical water environments at 700℃[J]. Corrosion Science, 2014, 81: 21-26. doi: 10.1016/j.corsci.2013.11.034
    [13] WAGNER C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys[J]. Journal of the Electrochemical Society, 1952, 99(10): 369. doi: 10.1149/1.2779605
    [14] PINT B A, BRADY M P, YAMAMOTO Y, et al. Evaluation of alumina-forming austenitic foil for advanced recuperators[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(10): 102302. doi: 10.1115/1.4002827
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  69
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-29
  • 修回日期:  2022-12-29
  • 刊出日期:  2023-10-13

目录

    /

    返回文章
    返回