Effect of Microstructure on Corrosion Behavior of Alloy 800H in Supercritical Water
-
摘要: 800H合金在超临界水冷堆的设计中被列为主要候选核燃料包壳材料之一,但是其在应用工况下的腐蚀性能受到加工状态的显著影响。本文通过高压釜浸泡试验、微观表征和机理分析对不同状态的800H合金在超临界水中的腐蚀行为进行研究,获得了表面磨抛状态、冷变形量和晶粒度对其均匀腐蚀行为的影响规律。结果表明:表面粗磨、冷变形和晶粒细化均可显著降低腐蚀速率,引起腐蚀增重规律由抛物线型向直线型转变;晶粒细化提高了材料的晶界密度,Cr在晶界附近的快速扩散有利于Cr2O3保护层的形成,可提高材料的耐腐蚀性能;表面粗磨后留下的浅表面变形层可在高温下再结晶形成高密度的纳米晶,这有利于表面Cr2O3保护层的快速形成,对初期腐蚀行为的抑制作用显著;轧制形成的冷变形提高了材料整体的晶界和位错密度,对包壳管的长期抗腐蚀能力具有明显的提升作用。Abstract: Alloy 800H is listed as one of the main candidate nuclear fuel cladding materials in the design of supercritical water-cooled reactor (SCWR), but its corrosion performance under application conditions is significantly affected by processing conditions. In this paper, the corrosion behavior of Alloy 800H in different states in supercritical water is studied by autoclave immersion test, microscopic characterization and mechanism analysis, and the effects of surface grinding and polishing state, cold deformation and grain size on its general corrosion behavior are obtained. The results show that surface rough grinding, cold deformation and grain refinement can significantly reduce the corrosion rate and cause the law of corrosion weight gain to change from parabolic to linear. Grain refinement improves the grain boundary density of the material, and the high diffusion rate of Cr near the grain boundary is conducive to the formation of the Cr2O3 protective layer, thus improving the corrosion resistance of the material. The shallow surface deformation layer left after surface rough grinding can be recrystallized into high-density nanocrystals at high temperature, which is conducive to the rapid formation of the surface Cr2O3 protective layer and has a significant inhibitory effect on the initial corrosion behavior. The cold deformation caused by rolling improves the grain boundary and dislocation density of material, which obviously enhances the long-term corrosion resistance of the cladding tube.
-
Key words:
- SCWR /
- Alloy 800H /
- General corrosion /
- Cold deformation /
- Grain size /
- Surface state
-
表 1 不同冷变形量抛光样品的腐蚀增重规律
Table 1. Corrosion Weight Gain Pattern of Samples with Different Cold Deformation
冷轧变形量/% $ k $ n $ R^{2} $ 0 12.56 0.469 0.995 20 15.54 0.423 0.986 40 19.57 0.281 0.993 60 17.32 0.176 0.993 80 17.94 0.088 0.889 -
[1] RAHMAN M M, JI D X, JAHAN N, et al. Design concepts of supercritical water-cooled reactor (SCWR) and nuclear marine vessel: A review[J]. Progress in Nuclear Energy, 2020, 124: 103320. doi: 10.1016/j.pnucene.2020.103320 [2] JIANG Z H, LI Y H, WANG S Z, et al. Review on mechanisms and kinetics for supercritical water oxidation processes[J]. Applied Sciences, 2020, 10(14): 4937. doi: 10.3390/app10144937 [3] KHATAMIAN D. Corrosion and deuterium uptake of Zr-based alloys in supercritical water[J]. The Journal of Supercritical Fluids, 2013, 78: 132-142. doi: 10.1016/j.supflu.2013.03.013 [4] 鲍一晨,张乐福,朱发文. Zr-2.5Nb合金在500℃,25MPa超临界水中的腐蚀行为[J]. 腐蚀科学与防护技术,2013, 25(5): 398-401. [5] 沈朝,段振刚,李力,等. F/M钢在超临界水环境中的腐蚀性能[J]. 原子能科学技术,2014, 48(7): 1165-1171. doi: 10.7538/yzk.2014.48.07.1165 [6] XIAO X, LIU G Q, HU B F, et al. Microstructure Stability of V and Ta Microalloyed 12%Cr Reduced Activation Ferrite/Martensite Steel during Long-term Aging at 650℃[J]. Journal of Materials Science & Technology, 2015, 31(3): 311-319. [7] LI Y H, WANG S Z, SUN P P, et al. Early oxidation mechanism of austenitic stainless steel TP347H in supercritical water[J]. Corrosion Science, 2017, 128: 241-252. doi: 10.1016/j.corsci.2017.09.023 [8] GUO X L, FAN Y, GAO W H, et al. Corrosion resistance of candidate cladding materials for supercritical water reactor[J]. Annals of Nuclear Energy, 2019, 127: 351-363. doi: 10.1016/j.anucene.2018.12.007 [9] PAYET M, MARCHETTI L, TABARANT M, et al. Corrosion mechanisms of 316L stainless steel in supercritical water: The significant effect of work hardening induced by surface finishes[J]. Corrosion Science, 2019, 157: 157-166. doi: 10.1016/j.corsci.2019.05.014 [10] GUZONAS D, NOVOTNY R, PENTTILÄ S, et al. Materials and water chemistry for supercritical water-cooled reactors[M]. Cambridge:Woodhead Publishing,2018:139-218. [11] YANG J Q, WANG S Z, LI Y H, et al. Under-deposit corrosion of Ni-based alloy 825 and Fe-Ni based alloy 800 in supercritical water oxidation environment[J]. Corrosion Science, 2020, 167: 108493. doi: 10.1016/j.corsci.2020.108493 [12] TAN L, ALLEN T R, YANG Y. Corrosion behavior of alloy 800H (Fe–21Cr–32Ni) in supercritical water[J]. Corrosion Science, 2011, 53(2): 703-711. doi: 10.1016/j.corsci.2010.10.021 [13] SHEN Z, WU L L, ZHANG L F, et al. Corrosion behavior of nickel base alloy 800H in high-temperature and high-pressured water[J]. Corrosion Science and Protection Technology, 2014, 26(2): 113-118. [14] CHOUDHRY K I, MAHBOUBI S, BOTTON G A, et al. Corrosion of engineering materials in a supercritical water cooled reactor: Characterization of oxide scales on Alloy 800H and stainless steel 316[J]. Corrosion Science, 2015, 100: 222-230. doi: 10.1016/j.corsci.2015.07.035 [15] CHOUDHRY K I, GUZONAS D A, KALLIKRAGAS D T, et al. On-line monitoring of oxide formation and dissolution on alloy 800H in supercritical water[J]. Corrosion Science, 2016, 111: 574-582. doi: 10.1016/j.corsci.2016.05.042 [16] CONG S, LIU Z, DANG Y, et al. Effects of cold work on the corrosion behavior of Alloy 800H exposed to aerated supercritical water[J]. Journal of Nuclear Materials, 2022, 559: 153408. doi: 10.1016/j.jnucmat.2021.153408 [17] MACÁK J, NOVOTNÝ R, SAJDL P, et al. In-situ electrochemical impedance measurements of corroding stainless steel in high subcritical and supercritical water[J]. Corrosion Science, 2019, 150: 9-16. doi: 10.1016/j.corsci.2019.01.017 [18] KRIKSUNOV L B, MACDONALD D D. Potential-pH diagrams for iron in supercritical water[J]. Corrosion, 1997, 53(8): 605-611. doi: 10.5006/1.3290292 [19] GAO X, WU X Q, ZHANG Z E, et al. Characterization of oxide films grown on 316L stainless steel exposed to H2O2-containing supercritical water[J]. The Journal of supercritical Fluids, 2007, 42(1): 157-163. doi: 10.1016/j.supflu.2006.12.020 [20] STELLWAG B. The mechanism of oxide film formation on austenitic stainless steels in high temperature water[J]. Corrosion Science, 1998, 40(2-3): 337-370. doi: 10.1016/S0010-938X(97)00140-6 [21] ZHANG Q, TANG R, YIN K J, et al. Corrosion behavior of Hastelloy C-276 in supercritical water[J]. Corrosion Science, 2009, 51(9): 2092-2097. doi: 10.1016/j.corsci.2009.05.041 [22] YANG J Q, WANG S Z, TANG X Y, et al. Effect of low oxygen concentration on the oxidation behavior of Ni-based alloys 625 and 825 in supercritical water[J]. The Journal of Supercritical Fluids, 2018, 131: 1-10. doi: 10.1016/j.supflu.2017.07.008 [23] LI Y H, JIANG Z H, WANG S Z, et al. Formation mechanism of the outer layer of duplex scales on stainless steels in oxygenated supercritical water[J]. Materials Letters, 2020, 270: 127731. doi: 10.1016/j.matlet.2020.127731 [24] NYE J F. Some geometrical relations in dislocated crystals[J]. Acta Metallurgica, 1953, 1(2): 153-162. doi: 10.1016/0001-6160(53)90054-6 [25] ZHOU N, PENG R L, PETTERSSON R. Surface characterization of austenitic stainless steel 304L after different grinding operations[J]. International Journal of Mechanical and Materials Engineering, 2017, 12(1): 6. doi: 10.1186/s40712-017-0074-6 [26] LOBNIG R E, SCHMIDT H P, HENNESEN K, et al. Diffusion of cations in chromia layers grown on iron-base alloys[J]. Oxidation of Metals, 1992, 37(1): 81-93. [27] YOUNG D J, PINT B A. Chromium volatilization rates from Cr2O3 scales into flowing gases containing water vapor[J]. Oxidation of Metals, 2006, 66(3): 137-153.