高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微观组织对800H合金在超临界水中腐蚀行为的影响规律

黄涛 苏豪展 张乐福 陈凯

黄涛, 苏豪展, 张乐福, 陈凯. 微观组织对800H合金在超临界水中腐蚀行为的影响规律[J]. 核动力工程, 2023, 44(5): 251-258. doi: 10.13832/j.jnpe.2023.05.0251
引用本文: 黄涛, 苏豪展, 张乐福, 陈凯. 微观组织对800H合金在超临界水中腐蚀行为的影响规律[J]. 核动力工程, 2023, 44(5): 251-258. doi: 10.13832/j.jnpe.2023.05.0251
Huang Tao, Su Haozhan, Zhang Lefu, Chen kai. Effect of Microstructure on Corrosion Behavior of Alloy 800H in Supercritical Water[J]. Nuclear Power Engineering, 2023, 44(5): 251-258. doi: 10.13832/j.jnpe.2023.05.0251
Citation: Huang Tao, Su Haozhan, Zhang Lefu, Chen kai. Effect of Microstructure on Corrosion Behavior of Alloy 800H in Supercritical Water[J]. Nuclear Power Engineering, 2023, 44(5): 251-258. doi: 10.13832/j.jnpe.2023.05.0251

微观组织对800H合金在超临界水中腐蚀行为的影响规律

doi: 10.13832/j.jnpe.2023.05.0251
基金项目: 国家重点研发计划(2018YFE0116200)
详细信息
    作者简介:

    黄 涛(2000—),男,在读博士研究生,主要从事超临界水冷堆材料腐蚀性能方面的研究,E-mail: huang_tao@sjtu.edu.cn

    通讯作者:

    张乐福,E-mail: lfzhang@sjtu.edu.cn

  • 中图分类号: TL341

Effect of Microstructure on Corrosion Behavior of Alloy 800H in Supercritical Water

  • 摘要: 800H合金在超临界水冷堆的设计中被列为主要候选核燃料包壳材料之一,但是其在应用工况下的腐蚀性能受到加工状态的显著影响。本文通过高压釜浸泡试验、微观表征和机理分析对不同状态的800H合金在超临界水中的腐蚀行为进行研究,获得了表面磨抛状态、冷变形量和晶粒度对其均匀腐蚀行为的影响规律。结果表明:表面粗磨、冷变形和晶粒细化均可显著降低腐蚀速率,引起腐蚀增重规律由抛物线型向直线型转变;晶粒细化提高了材料的晶界密度,Cr在晶界附近的快速扩散有利于Cr2O3保护层的形成,可提高材料的耐腐蚀性能;表面粗磨后留下的浅表面变形层可在高温下再结晶形成高密度的纳米晶,这有利于表面Cr2O3保护层的快速形成,对初期腐蚀行为的抑制作用显著;轧制形成的冷变形提高了材料整体的晶界和位错密度,对包壳管的长期抗腐蚀能力具有明显的提升作用。

     

  • 图  1  磨抛与轧制示意图 mm

    TD—轧制横向;RD—轧制方向;ND—下轧方向

    Figure  1.  Schematic Diagram of Rolling, Grounding and Polishing Process

    图  2  粗磨样品和抛光样品随浸泡时间的腐蚀增重曲线

    Figure  2.  Corrosion Weight Gain Curves of Ground and Polished Samples

    图  3  粗磨样品和抛光样品腐蚀后的表面氧化物形貌

    Figure  3.  Surface Oxide Morphology of Ground and Polished Samples after Corrosion

    图  4  抛光样品腐蚀1000 h后的截面形貌和元素分布

    Figure  4.  Cross Section Morphology and Element Distribution of Polished Samples after 1000 h Corrosion

    图  5  粗磨样品腐蚀1000 h后的截面形貌、元素分布及线扫结果

    Figure  5.  Cross Section Morphology, Element Distribution and Line Scan Result of Polished Samples after 1000 h Corrosion

    图  6  不同表面磨抛状态样品的ρGND分布

    Figure  6.  ρGND Distribution of Samples with Different Surface States      

    图  7  不同冷变形量抛光样品的腐蚀增重曲线

    Figure  7.  Corrosion Weight Gain Curves of Samples with Different Cold Deformation

    图  8  80%冷变形量抛光样品腐蚀1000 h后的截面形貌、元素分布及线扫结果

    Figure  8.  Cross Section Morphology, Element Distribution and Line Scan Result of Polished Samples with 80% Cold Deformation after 1000 h Corrosion

    图  9  不同晶粒度样品的腐蚀增重曲线

    Figure  9.  Corrosion Weight Gain Curves of Samples with Different Grain Sizes

    图  10  粗晶样品和细晶样品的腐蚀表面形貌

    Figure  10.  Corrosion Surface Morphology of Coarse and Fine Crystal Samples

    图  11  不同晶粒度样品的腐蚀截面形貌

    Figure  11.  Cross Section Morphology of Samples with Different Grain Sizes after Corrosion

    图  12  不同晶粒度样品腐蚀表面的XRD图谱

    F—基体;H—Fe2O3/ Cr2O3;M—Fe3O4/ FeCr2O4

    Figure  12.  XRD Spectrum of Samples with Different Grain Sizes after Corrosion

    表  1  不同冷变形量抛光样品的腐蚀增重规律

    Table  1.   Corrosion Weight Gain Pattern of Samples with Different Cold Deformation

    冷轧变形量/% $ k $ n $ R^{2} $
    0 12.56 0.469 0.995
    20 15.54 0.423 0.986
    40 19.57 0.281 0.993
    60 17.32 0.176 0.993
    80 17.94 0.088 0.889
    下载: 导出CSV
  • [1] RAHMAN M M, JI D X, JAHAN N, et al. Design concepts of supercritical water-cooled reactor (SCWR) and nuclear marine vessel: A review[J]. Progress in Nuclear Energy, 2020, 124: 103320. doi: 10.1016/j.pnucene.2020.103320
    [2] JIANG Z H, LI Y H, WANG S Z, et al. Review on mechanisms and kinetics for supercritical water oxidation processes[J]. Applied Sciences, 2020, 10(14): 4937. doi: 10.3390/app10144937
    [3] KHATAMIAN D. Corrosion and deuterium uptake of Zr-based alloys in supercritical water[J]. The Journal of Supercritical Fluids, 2013, 78: 132-142. doi: 10.1016/j.supflu.2013.03.013
    [4] 鲍一晨,张乐福,朱发文. Zr-2.5Nb合金在500℃,25MPa超临界水中的腐蚀行为[J]. 腐蚀科学与防护技术,2013, 25(5): 398-401.
    [5] 沈朝,段振刚,李力,等. F/M钢在超临界水环境中的腐蚀性能[J]. 原子能科学技术,2014, 48(7): 1165-1171. doi: 10.7538/yzk.2014.48.07.1165
    [6] XIAO X, LIU G Q, HU B F, et al. Microstructure Stability of V and Ta Microalloyed 12%Cr Reduced Activation Ferrite/Martensite Steel during Long-term Aging at 650℃[J]. Journal of Materials Science & Technology, 2015, 31(3): 311-319.
    [7] LI Y H, WANG S Z, SUN P P, et al. Early oxidation mechanism of austenitic stainless steel TP347H in supercritical water[J]. Corrosion Science, 2017, 128: 241-252. doi: 10.1016/j.corsci.2017.09.023
    [8] GUO X L, FAN Y, GAO W H, et al. Corrosion resistance of candidate cladding materials for supercritical water reactor[J]. Annals of Nuclear Energy, 2019, 127: 351-363. doi: 10.1016/j.anucene.2018.12.007
    [9] PAYET M, MARCHETTI L, TABARANT M, et al. Corrosion mechanisms of 316L stainless steel in supercritical water: The significant effect of work hardening induced by surface finishes[J]. Corrosion Science, 2019, 157: 157-166. doi: 10.1016/j.corsci.2019.05.014
    [10] GUZONAS D, NOVOTNY R, PENTTILÄ S, et al. Materials and water chemistry for supercritical water-cooled reactors[M]. Cambridge:Woodhead Publishing,2018:139-218.
    [11] YANG J Q, WANG S Z, LI Y H, et al. Under-deposit corrosion of Ni-based alloy 825 and Fe-Ni based alloy 800 in supercritical water oxidation environment[J]. Corrosion Science, 2020, 167: 108493. doi: 10.1016/j.corsci.2020.108493
    [12] TAN L, ALLEN T R, YANG Y. Corrosion behavior of alloy 800H (Fe–21Cr–32Ni) in supercritical water[J]. Corrosion Science, 2011, 53(2): 703-711. doi: 10.1016/j.corsci.2010.10.021
    [13] SHEN Z, WU L L, ZHANG L F, et al. Corrosion behavior of nickel base alloy 800H in high-temperature and high-pressured water[J]. Corrosion Science and Protection Technology, 2014, 26(2): 113-118.
    [14] CHOUDHRY K I, MAHBOUBI S, BOTTON G A, et al. Corrosion of engineering materials in a supercritical water cooled reactor: Characterization of oxide scales on Alloy 800H and stainless steel 316[J]. Corrosion Science, 2015, 100: 222-230. doi: 10.1016/j.corsci.2015.07.035
    [15] CHOUDHRY K I, GUZONAS D A, KALLIKRAGAS D T, et al. On-line monitoring of oxide formation and dissolution on alloy 800H in supercritical water[J]. Corrosion Science, 2016, 111: 574-582. doi: 10.1016/j.corsci.2016.05.042
    [16] CONG S, LIU Z, DANG Y, et al. Effects of cold work on the corrosion behavior of Alloy 800H exposed to aerated supercritical water[J]. Journal of Nuclear Materials, 2022, 559: 153408. doi: 10.1016/j.jnucmat.2021.153408
    [17] MACÁK J, NOVOTNÝ R, SAJDL P, et al. In-situ electrochemical impedance measurements of corroding stainless steel in high subcritical and supercritical water[J]. Corrosion Science, 2019, 150: 9-16. doi: 10.1016/j.corsci.2019.01.017
    [18] KRIKSUNOV L B, MACDONALD D D. Potential-pH diagrams for iron in supercritical water[J]. Corrosion, 1997, 53(8): 605-611. doi: 10.5006/1.3290292
    [19] GAO X, WU X Q, ZHANG Z E, et al. Characterization of oxide films grown on 316L stainless steel exposed to H2O2-containing supercritical water[J]. The Journal of supercritical Fluids, 2007, 42(1): 157-163. doi: 10.1016/j.supflu.2006.12.020
    [20] STELLWAG B. The mechanism of oxide film formation on austenitic stainless steels in high temperature water[J]. Corrosion Science, 1998, 40(2-3): 337-370. doi: 10.1016/S0010-938X(97)00140-6
    [21] ZHANG Q, TANG R, YIN K J, et al. Corrosion behavior of Hastelloy C-276 in supercritical water[J]. Corrosion Science, 2009, 51(9): 2092-2097. doi: 10.1016/j.corsci.2009.05.041
    [22] YANG J Q, WANG S Z, TANG X Y, et al. Effect of low oxygen concentration on the oxidation behavior of Ni-based alloys 625 and 825 in supercritical water[J]. The Journal of Supercritical Fluids, 2018, 131: 1-10. doi: 10.1016/j.supflu.2017.07.008
    [23] LI Y H, JIANG Z H, WANG S Z, et al. Formation mechanism of the outer layer of duplex scales on stainless steels in oxygenated supercritical water[J]. Materials Letters, 2020, 270: 127731. doi: 10.1016/j.matlet.2020.127731
    [24] NYE J F. Some geometrical relations in dislocated crystals[J]. Acta Metallurgica, 1953, 1(2): 153-162. doi: 10.1016/0001-6160(53)90054-6
    [25] ZHOU N, PENG R L, PETTERSSON R. Surface characterization of austenitic stainless steel 304L after different grinding operations[J]. International Journal of Mechanical and Materials Engineering, 2017, 12(1): 6. doi: 10.1186/s40712-017-0074-6
    [26] LOBNIG R E, SCHMIDT H P, HENNESEN K, et al. Diffusion of cations in chromia layers grown on iron-base alloys[J]. Oxidation of Metals, 1992, 37(1): 81-93.
    [27] YOUNG D J, PINT B A. Chromium volatilization rates from Cr2O3 scales into flowing gases containing water vapor[J]. Oxidation of Metals, 2006, 66(3): 137-153.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  17
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-22
  • 修回日期:  2022-12-22
  • 刊出日期:  2023-10-13

目录

    /

    返回文章
    返回