高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米氧化物弥散强化310奥氏体钢的显微结构与拉伸性能

尹晨欣 贾皓东 周张健 郑文跃

尹晨欣, 贾皓东, 周张健, 郑文跃. 纳米氧化物弥散强化310奥氏体钢的显微结构与拉伸性能[J]. 核动力工程, 2023, 44(5): 259-266. doi: 10.13832/j.jnpe.2023.05.0259
引用本文: 尹晨欣, 贾皓东, 周张健, 郑文跃. 纳米氧化物弥散强化310奥氏体钢的显微结构与拉伸性能[J]. 核动力工程, 2023, 44(5): 259-266. doi: 10.13832/j.jnpe.2023.05.0259
Yin Chenxin, Jia Haodong, Zhou Zhangjian, Zheng Wenyue. Microstructure and Tensile Properties of ODS-310 Austenitic Steel[J]. Nuclear Power Engineering, 2023, 44(5): 259-266. doi: 10.13832/j.jnpe.2023.05.0259
Citation: Yin Chenxin, Jia Haodong, Zhou Zhangjian, Zheng Wenyue. Microstructure and Tensile Properties of ODS-310 Austenitic Steel[J]. Nuclear Power Engineering, 2023, 44(5): 259-266. doi: 10.13832/j.jnpe.2023.05.0259

纳米氧化物弥散强化310奥氏体钢的显微结构与拉伸性能

doi: 10.13832/j.jnpe.2023.05.0259
基金项目: 国家重点研发计划项目(2018YFE0116200)
详细信息
    作者简介:

    尹晨欣(2001—),女,硕士研究生,现主要从事ODS合金研究,E-mail: m202210394@xs.ustb.edu.cn

    通讯作者:

    周张健,E-mail: zhouzhj@mater.ustb.edu.cn

  • 中图分类号: TL341

Microstructure and Tensile Properties of ODS-310 Austenitic Steel

  • 摘要: 为向超临界水冷堆提供可靠的核燃料包壳材料,通过机械合金化(MA)和热等静压法(HIP)制备了具有超细晶粒且弥散大量纳米氧化物颗粒的ODS-310奥氏体钢,采用扫描电镜(SEM)、能谱仪(EDS)和透射电镜(TEM)分析了经过不同热处理条件后材料的显微形貌,并测试了其拉伸性能。结果表明,材料中的弥散强化粒子呈球形,主要分布在晶粒内部及晶界处,其平均尺寸在10 nm以下,经成分分析及高分辨标定可确定为Y2Al5O12。热轧塑性变形加工配合热处理可明显调控样品的晶粒组织,经1100℃/120 h 热处理后,弥散颗粒尺寸和成分仍保持稳定,粒子对位错有明显的钉扎作用。所制备ODS-310奥氏体钢具有较高的抗拉强度,且其热稳定性良好,在不同温度下热处理前后样品的抗拉强度均在850 MPa左右,且经1100℃/120 h热处理后样品的塑性明显提高。本研究表明ODS-310奥氏体钢的拉伸性能良好,通过热处理可以调控晶粒组织,为ODS奥氏体钢的性能研究提供了宝贵的数据支持。

     

  • 图  1  M6圆棒状拉伸试样  mm

    Figure  1.  M6 Round Bar Tensile Specimen

    图  2  高能球磨后合金粉末的XRD图谱

    Figure  2.  XRD Pattern of Alloy Powder after High-Energy Ball Milling

    图  3  高能球磨后合金粉末的SEM图像

    Figure  3.  SEM Images of Alloy Powder after High-Energy Ball Milling

    图  4  合金粉末截面的SEM图像

    Figure  4.  SEM Cross-Section Morphology of Alloy Powder

    图  5  各EBSD样品晶粒尺寸分布图

    Figure  5.  Grain Size Distribution of Each EBSD Sample

    图  6  各EBSD样品GND图

    Figure  6.  GND Diagram of Each EBSD Sample

    图  7  各EBSD样品在{111}<110>方向上 Schmid 因子计算结果

    Figure  7.  Calculation Results of Schmid Factor for Each EBSD Sample in {111}<110> Direction

    图  8  未经热处理ODS-310奥氏体钢不同放大倍数下的TEM图像

    Figure  8.  TEM Images of Unheated ODS-310 Austenitic Steel with Different Magnification

    图  9  1100℃/120 h热处理后ODS-310奥氏体钢在不同放大倍数下的TEM图像

    Figure  9.  TEM Images of ODS-310 Austenitic Steel after Heat Treatment at 1100℃/120 h with Different Magnification

    图  10  1100℃/120 h热处理样品EDS图像

    Figure  10.  EDS Images of Heat-treated Sample at 1100℃/120 h

    图  11  1100℃/120 h热处理样品中氧化物弥散粒子标定图

    Figure  11.  Calibration Diagram of Oxide Dispersion Particles in Heat-treated Sample at 1100℃/120 h

    图  12  锻造态与热轧态ODS-310奥氏体钢应力-应变曲线

    Figure  12.  Stress-Strain Curves of Forged and Rolled ODS-310 Austenitic Steel

    图  13  不同温度热处理后样品的应力-应变曲线

    Figure  13.  Stress-Strain Curves of Samples after Heat Treatment at Different Temperatures

    图  14  ODS-310奥氏体钢在不同温度下热处理后抗拉强度与断后伸长率对比图

    Figure  14.  Comparison of Tensile Strength and Elongation of ODS-310 Austenitic Steel after Heat Treatment at Different Temperatures

    图  15  各样品拉伸断口的SEM图像

    Figure  15.  SEM Images of Tensile Fracture of Each Sample

    表  1  ODS-310钢烧结坯实际成分

    Table  1.   Actual Composition of Sintered ODS-310 Steel

    元素 Fe Cr Ni Ti Mo Y O Zr
    质量分数/% 54.73 23.97 18.33 0.32 1.93 0.26 0.16 0.30
    下载: 导出CSV
  • [1] BUCKTHORPE D. Introduction to generation IV nuclear reactors[M]//YVON P. Structural Materials for Generation IV Nuclear Reactors. Amsterdam: Elsevier, 2017: 1-22.
    [2] NOVOTNY R, GUZONAS D. Material research for the supercritical water-cooled reactor—summary and open issues[M]//RITTER S. Nuclear Corrosion: Research, Progress and Challenges. Duxford: Woodhead Publishing, 2020: 403-435.
    [3] GUO X L, FAN Y, GAO W H, et al. Corrosion resistance of candidate cladding materials for supercritical water reactor[J]. Annals of Nuclear Energy, 2019, 127: 351-363. doi: 10.1016/j.anucene.2018.12.007
    [4] VORONIN V I. Neutron diffraction study of samples of fuel element claddings made of austenitic steel[J]. Journal of Nuclear Materials, 2021, 547: 152798. doi: 10.1016/j.jnucmat.2021.152798
    [5] HURE J, COURCELLE A, TURQUE I. A micromechanical analysis of swelling-induced embrittlement in neutron-irradiated austenitic stainless steels[J]. Journal of Nuclear Materials, 2022, 565: 153732. doi: 10.1016/j.jnucmat.2022.153732
    [6] WANG M, SUN H Y, ZOU L, et al. Structural evolution of oxide dispersion strengthened austenitic powders during mechanical alloying and subsequent consolidation[J]. Powder Technology, 2015, 272: 309-315. doi: 10.1016/j.powtec.2014.12.008
    [7] RAMAN L, GOTHANDAPANI K, MURTY B S. Austenitic oxide dispersion strengthened steels: a review[J]. Defence Science Journal, 2016, 66(4): 316-322. doi: 10.14429/dsj.66.10205
    [8] RIBIS J, LOZANO-PEREZ S. Nano-cluster stability following neutron irradiation in MA957 oxide dispersion strengthened material[J]. Journal of Nuclear Materials, 2014, 444(1-3): 314-322. doi: 10.1016/j.jnucmat.2013.10.010
    [9] GAO J, CHEN F D, TANG X B, et al. Effects of grain boundary structures on primary radiation damage and radiation-induced segregation in austenitic stainless steel[J]. Journal of Applied Physics, 2020, 128(10): 105304. doi: 10.1063/5.0016404
    [10] GRÄNING T, RIETH M, HOFFMANN J, et al. Production, microstructure and mechanical properties of two different austenitic ODS steels[J]. Journal of Nuclear Materials, 2017, 487: 348-361. doi: 10.1016/j.jnucmat.2017.02.034
    [11] LITVINOV D, CHAUHAN A, GRÄNING T, et al. Microstructure characterization of a novel austenitic ODS steel by transmission electron microscopy[J]. Materialia, 2019, 5: 100176. doi: 10.1016/j.mtla.2018.11.025
    [12] WANG M, ZHOU Z J, SUN H Y, et al. Microstructural observation and tensile properties of ODS-304 austenitic steel[J]. Materials Science and Engineering:A, 2013, 559: 287-292. doi: 10.1016/j.msea.2012.08.099
    [13] ZHOU Z J, SUN S Y, ZOU L, et al. Enhanced strength and high temperature resistance of 25Cr20Ni ODS austenitic alloy through thermo-mechanical treatment and addition of Mo[J]. Fusion Engineering and Design, 2019, 138: 175-182. doi: 10.1016/j.fusengdes.2018.11.020
    [14] GRÄNING T, RIETH M, MÖSLANG A, et al. Investigation of precipitate in an austenitic ODS steel containing a carbon-rich process control agent[J]. Nuclear Materials and Energy, 2018, 15: 237-243. doi: 10.1016/j.nme.2018.05.005
    [15] 王曼,周张健,闫志刚,等. ODS-316奥氏体钢显微结构及弥散相的TEM研究[J]. 金属学报,2013, 49(2): 153-158.
    [16] PENG Y Y, YU L M, LIU Y C, et al. Microstructures and tensile properties of an austenitic ODS heat resistance steel[J]. Materials Science and Engineering:A, 2019, 767: 138419. doi: 10.1016/j.msea.2019.138419
    [17] WANG M, ZHOU Z J, SUN H Y, et al. Effects of plastic deformations on microstructure and mechanical properties of ODS-310 austenitic steel[J]. Journal of Nuclear Materials, 2012, 430(1-3): 259-263. doi: 10.1016/j.jnucmat.2012.07.014
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  56
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-22
  • 修回日期:  2023-01-04
  • 刊出日期:  2023-10-13

目录

    /

    返回文章
    返回