高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水化学因素对800H合金在超临界水冷堆中服役性能研究

苏豪展 黄涛 张乐福 陈凯

苏豪展, 黄涛, 张乐福, 陈凯. 水化学因素对800H合金在超临界水冷堆中服役性能研究[J]. 核动力工程, 2023, 44(5): 267-274. doi: 10.13832/j.jnpe.2023.05.0267
引用本文: 苏豪展, 黄涛, 张乐福, 陈凯. 水化学因素对800H合金在超临界水冷堆中服役性能研究[J]. 核动力工程, 2023, 44(5): 267-274. doi: 10.13832/j.jnpe.2023.05.0267
Su Haozhan, Huang Tao, Zhang Lefu, Chen Kai. Effect of Water Chemistry on the Performance of Alloy 800H in Supercritical Water-cooled Reactor[J]. Nuclear Power Engineering, 2023, 44(5): 267-274. doi: 10.13832/j.jnpe.2023.05.0267
Citation: Su Haozhan, Huang Tao, Zhang Lefu, Chen Kai. Effect of Water Chemistry on the Performance of Alloy 800H in Supercritical Water-cooled Reactor[J]. Nuclear Power Engineering, 2023, 44(5): 267-274. doi: 10.13832/j.jnpe.2023.05.0267

水化学因素对800H合金在超临界水冷堆中服役性能研究

doi: 10.13832/j.jnpe.2023.05.0267
基金项目: 国家重点研发计划(2018YFE0116200)
详细信息
    作者简介:

    苏豪展(1995—),男,博士研究生,现主要从事超临界水冷堆材料腐蚀与水化学研究,E-mail: haozhan_su@sjtu.edu.cn

    通讯作者:

    张乐福,E-mail: lfzhang@sjtu.edu.cn

  • 中图分类号: TL341

Effect of Water Chemistry on the Performance of Alloy 800H in Supercritical Water-cooled Reactor

  • 摘要: 为研究超临界水环境下温度、溶解氧等水化学因素对于堆内包壳材料服役性能的影响规律,探究超临界水冷堆的水化学控制策略,以800H合金作为实验材料,测量了不同温度、水化学条件下超临界水中材料的腐蚀增重规律和慢应变速率拉伸曲线。温度的提升将加快800H合金的腐蚀速率,腐蚀激活能约为159 kJ/mol;温度由550℃升高至650℃,材料的屈服强度变化不显著,约为175 MPa,但屈强比显著下降,呈现明显的软化趋势;650℃下溶解氧浓度由0 μg·kg–1提升至500 μg·kg–1,导致腐蚀增重量增加约30%,而使用联氨除氧的水化学控制方法可以降低800H合金的腐蚀速率;溶解氧浓度对于慢应变速率拉伸的测试结果并无明显作用,这主要是由于超临界水环境下材料的应力腐蚀失效由蠕变过程主导。研究结果表明超临界水环境下进行温度和溶氧控制有助于降低800H合金的腐蚀速率并保持其力学性能。

     

  • 图  1  原始样品的微观组织结构特征

    Figure  1.  Microstructural Characteristics of As-received Sample       

    图  2  SSRT样品及均匀腐蚀样品尺寸 mm

    Figure  2.  Dimensions of Samples for SSRT Test and Corrosion Test      

    图  3  样品腐蚀增重曲线及拟合结果

    W—单位面积的腐蚀增重量,mg/dm2t—浸泡时间,h

    Figure  3.  Corrosion Weight Gain Curves for Sample and Fitting Results

    图  4  不同水化学条件下样品浸泡100 h的腐蚀增重量

    Figure  4.  Wight Gain of Samples under Different Water Chemistry Conditions for 100 h Exposure

    图  5  样品在650℃氩气除氧环境中浸泡500 h的腐蚀形貌

    Figure  5.  Surface Morphology of Samples after 500 h Exposure in Deaerated SCW at 650°C

    图  6  研磨样品STEM-EDS面扫结果

    Figure  6.  STEM-EDS Mapping on the Cross Section of Ground Samples

    图  7  不同水化学工况的腐蚀表面形貌

    Figure  7.  Surface Morphology of Samples under Different Water Chemistry Conditions

    图  8  金属氧化物形成所需氧分压

    Figure  8.  Oxygen Partial Pressure Required for the Formation of Metal Oxide

    图  9  样品在不同温度下的SSRT曲线

    Figure  9.  SSRT Curves of Samples at Different Temperatures

    图  10  样品在不同水化学条件下的SSRT曲线

    Figure  10.  SSRT Curves of Samplens under Different Water Chemistry Conditions

    图  11  2种工况下的SSRT样品表面形貌

    Figure  11.  Surface Morphology of SSRT Sample under Two Conditions

    图  12  氧化工况下SSRT样品的截面EBSD图

    Figure  12.  EBSD Mapping on Cross Section of SSRT Sample under Oxidation Condition

    图  13  SSRT样品内部的微裂纹

    Figure  13.  Micro-cracks Located inside SSRT Samples

    表  1  800H合金的化学成分

    Table  1.   Chemical Composition of Alloy 800H

    元素 Fe Cr Ni Al Ti Mn Si C
    质量分数/% Bal. 21.280 31.660 0.541 0.426 0.660 0.303 0.077
      “Bal.”—Fe元素的占比余量
    下载: 导出CSV

    表  2  水化学测试环境参数

    Table  2.   Parameters of Water Chemistry Test

    环境条件 入口溶解氧浓度/(μg·kg−1) 联氨浓度/(μg·kg−1) 水质
    中性工况 <5 超纯水
    氧化工况 300 超纯水
    氧加联氨 300 100 pH25=8.1
    过量联氨 <5 100 pH25=8.1
    下载: 导出CSV
  • [1] 臧金光,黄彦平. 超临界水冷堆研发进展[J]. 核动力工程,2021, 42(6): 1-4.
    [2] ALLEN T R, CHEN Y, REN X, et al. Material performance in supercritical water[M]//KONINGS R J M. Comprehensive Nuclear Materials. Oxford: Elsevier, 2012: 279-326.
    [3] ZHENG W Y, GUZONAS D, BOYLE K P, et al. Materials assessment for the Canadian SCWR core concept[J]. JOM, 2016, 68(2): 456-462. doi: 10.1007/s11837-015-1758-0
    [4] GUZONAS D, NOVOTNY R, PENTILLA S, et al. Materials and water chemistry for supercritical water-cooled reactors[M]. Cambridge: Woodhead Publishing, 2018: 1-17.
    [5] KOLLURI M, PIERICK P T, BAKKER T. Characterization of high temperature tensile and creep–fatigue properties of Alloy 800H for intermediate heat exchanger components of (V)HTRs[J]. Nuclear Engineering and Design, 2015, 284: 38-49. doi: 10.1016/j.nucengdes.2014.12.017
    [6] CARVAJAL-ORTIZ R A, PLUGATYR A, SVISHCHEV I M. On the pH control at supercritical water-cooled reactor operating conditions[J]. Nuclear Engineering and Design, 2012, 248: 340-342. doi: 10.1016/j.nucengdes.2012.03.038
    [7] GUZONAS D, BROSSEAU F, TREMAINE P, et al. Water chemistry in a supercritical water-cooled pressure tube reactor[J]. Nuclear Technology, 2012, 179(2): 205-219. doi: 10.13182/NT12-A14093
    [8] 龚宾,黄彦平,姜峨,等. 超临界水冷堆水化学控制及其相关技术研究进展[J]. 核动力工程,2012, 33(6): 132-138.
    [9] 朱志平,陆海伟,汤雪颖,等. 不同水工况下超临界机组水冷壁管材料的腐蚀特性研究[J]. 中国腐蚀与防护学报,2014, 34(3): 243-248. doi: 10.11902/1005.4537.2013.137
    [10] DRABBLE D J, BISHOP C M, KRAL M V. A microstructural study of grain boundary engineered alloy 800H[J]. Metallurgical and Materials Transactions A, 2010, 42(3): 763-772.
    [11] SHEN Z, ZHANG L F, TANG R, et al. SCC susceptibility of type 316Ti stainless steel in supercritical water[J]. Journal of Nuclear Materials, 2015, 458: 206-215. doi: 10.1016/j.jnucmat.2014.12.014
    [12] CHEN K, WANG J M, DU D H, et al. Stress corrosion crack growth behavior of Type 310S stainless steel in supercritical water[J]. Corrosion, 2018, 74(7): 776-787. doi: 10.5006/2775
    [13] GUZONAS D, EDWARDS M, ZHENG W. Assessment of candidate fuel cladding alloys for the Canadian supercritical water-cooled reactor concept[J]. Journal of Nuclear Engineering and Radiation Science, 2016, 2(1): 011016. doi: 10.1115/1.4031502
    [14] ZENG Y M, GUZONAS D. Corrosion assessment of candidate materials for fuel cladding in Canadian SCWR[J]. JOM, 2016, 68(2): 475-479. doi: 10.1007/s11837-015-1745-5
    [15] 朱忠亮. 超临界水环境下电厂金属材料的氧化动力学研究[D]. 北京: 华北电力大学, 2013.
    [16] WANG Y Z, SUN Y, YUE M Z, et al. Reaction kinetics of chlorine corrosion to heating surfaces during coal and biomass cofiring[J]. Journal of Chemistry, 2020, 2020: 2175795.
    [17] NEUMANN G, TUIJN C. Self-diffusion and impurity diffusion in pure metals[M]. Oxford: Pergamon, 2008: 1-35.
    [18] ARIOKA K, IIJIMA Y, MIYAMOTO T. Rapid nickel diffusion in cold-worked type 316 austenitic steel at 360-500℃[J]. International Journal of Materials Research, 2017, 108(10): 791-797. doi: 10.3139/146.111542
    [19] HASEGAWA M. Ellingham diagram[M]// SEETHARAMAN S. Treatise on Process Metallurgy. Boston: Elsevier, 2014: 507-516.
    [20] KAMAYA M. Measurement of local plastic strain distribution of stainless steel by electron backscatter diffraction[J]. Materials Characterization, 2009, 60(2): 125-132. doi: 10.1016/j.matchar.2008.07.010
    [21] AINSWORTH R A. Creep cracking[M]//MILNE I, RITCHIE R O, KARIHALOO B. Comprehensive Structural Integrity. Oxford: Pergamon, 2007: 75-87.
    [22] KASSNER M E, HAYES T A. Creep cavitation in metals[J]. International Journal of Plasticity, 2003, 19(10): 1715-1748. doi: 10.1016/S0749-6419(02)00111-0
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  45
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-22
  • 修回日期:  2022-12-23
  • 刊出日期:  2023-10-13

目录

    /

    返回文章
    返回