Effect of Water Chemistry on the Performance of Alloy 800H in Supercritical Water-cooled Reactor
-
摘要: 为研究超临界水环境下温度、溶解氧等水化学因素对于堆内包壳材料服役性能的影响规律,探究超临界水冷堆的水化学控制策略,以800H合金作为实验材料,测量了不同温度、水化学条件下超临界水中材料的腐蚀增重规律和慢应变速率拉伸曲线。温度的提升将加快800H合金的腐蚀速率,腐蚀激活能约为159 kJ/mol;温度由550℃升高至650℃,材料的屈服强度变化不显著,约为175 MPa,但屈强比显著下降,呈现明显的软化趋势;650℃下溶解氧浓度由0 μg·kg–1提升至500 μg·kg–1,导致腐蚀增重量增加约30%,而使用联氨除氧的水化学控制方法可以降低800H合金的腐蚀速率;溶解氧浓度对于慢应变速率拉伸的测试结果并无明显作用,这主要是由于超临界水环境下材料的应力腐蚀失效由蠕变过程主导。研究结果表明超临界水环境下进行温度和溶氧控制有助于降低800H合金的腐蚀速率并保持其力学性能。Abstract: In order to study the influence of water chemistry factors such as temperature and dissolved oxygen on the service performance of cladding materials in supercritical water environment, and to find out the water chemistry control policy of supercritical water-cooled reactor, Alloy 800H was used as the experimental material in this paper, and the corrosion weight gain and slow strain rate tensile curve of the material in supercritical water under different temperature and water chemistry conditions were measured. Increasing the temperature would accelerate the corrosion rate of Alloy 800H, and the corrosion activation energy was about 159 kJ/mol. Increasing the temperature from 550℃ to 650℃, the yield strength of the material did not change significantly, which was about 175 MPa. However, the ratio of yield strength over tensile strength decreased significantly, showing an obvious softness trend of the material. At 650℃, raising the dissolved oxygen concentration from 0 μg·kg–1 to 500 μg·kg–1 resulted in an increase of corrosion weight gain of about 30%, but the water chemistry control method using hydrazine deoxygenation could reduce the corrosion rate of Alloy 800H. The dissolved oxygen concentration did not have a significant effect on the results of slow strain rate tensile testing, mainly because the stress corrosion failure of the material in supercritical water environment is dominated by creep process. The results indicate that appropriate controlling of temperature and dissolved oxygen in supercritical water environment can be helpful to reduce the corrosion rate of Alloy 800H and maintain its mechanical properties.
-
Key words:
- Supercritical water-cooled reactor /
- Alloy 800H /
- Water chemistry /
- Stress corrosion
-
表 1 800H合金的化学成分
Table 1. Chemical Composition of Alloy 800H
元素 Fe Cr Ni Al Ti Mn Si C 质量分数/% Bal. 21.280 31.660 0.541 0.426 0.660 0.303 0.077 “Bal.”—Fe元素的占比余量 表 2 水化学测试环境参数
Table 2. Parameters of Water Chemistry Test
环境条件 入口溶解氧浓度/(μg·kg−1) 联氨浓度/(μg·kg−1) 水质 中性工况 <5 超纯水 氧化工况 300 超纯水 氧加联氨 300 100 pH25=8.1 过量联氨 <5 100 pH25=8.1 -
[1] 臧金光,黄彦平. 超临界水冷堆研发进展[J]. 核动力工程,2021, 42(6): 1-4. [2] ALLEN T R, CHEN Y, REN X, et al. Material performance in supercritical water[M]//KONINGS R J M. Comprehensive Nuclear Materials. Oxford: Elsevier, 2012: 279-326. [3] ZHENG W Y, GUZONAS D, BOYLE K P, et al. Materials assessment for the Canadian SCWR core concept[J]. JOM, 2016, 68(2): 456-462. doi: 10.1007/s11837-015-1758-0 [4] GUZONAS D, NOVOTNY R, PENTILLA S, et al. Materials and water chemistry for supercritical water-cooled reactors[M]. Cambridge: Woodhead Publishing, 2018: 1-17. [5] KOLLURI M, PIERICK P T, BAKKER T. Characterization of high temperature tensile and creep–fatigue properties of Alloy 800H for intermediate heat exchanger components of (V)HTRs[J]. Nuclear Engineering and Design, 2015, 284: 38-49. doi: 10.1016/j.nucengdes.2014.12.017 [6] CARVAJAL-ORTIZ R A, PLUGATYR A, SVISHCHEV I M. On the pH control at supercritical water-cooled reactor operating conditions[J]. Nuclear Engineering and Design, 2012, 248: 340-342. doi: 10.1016/j.nucengdes.2012.03.038 [7] GUZONAS D, BROSSEAU F, TREMAINE P, et al. Water chemistry in a supercritical water-cooled pressure tube reactor[J]. Nuclear Technology, 2012, 179(2): 205-219. doi: 10.13182/NT12-A14093 [8] 龚宾,黄彦平,姜峨,等. 超临界水冷堆水化学控制及其相关技术研究进展[J]. 核动力工程,2012, 33(6): 132-138. [9] 朱志平,陆海伟,汤雪颖,等. 不同水工况下超临界机组水冷壁管材料的腐蚀特性研究[J]. 中国腐蚀与防护学报,2014, 34(3): 243-248. doi: 10.11902/1005.4537.2013.137 [10] DRABBLE D J, BISHOP C M, KRAL M V. A microstructural study of grain boundary engineered alloy 800H[J]. Metallurgical and Materials Transactions A, 2010, 42(3): 763-772. [11] SHEN Z, ZHANG L F, TANG R, et al. SCC susceptibility of type 316Ti stainless steel in supercritical water[J]. Journal of Nuclear Materials, 2015, 458: 206-215. doi: 10.1016/j.jnucmat.2014.12.014 [12] CHEN K, WANG J M, DU D H, et al. Stress corrosion crack growth behavior of Type 310S stainless steel in supercritical water[J]. Corrosion, 2018, 74(7): 776-787. doi: 10.5006/2775 [13] GUZONAS D, EDWARDS M, ZHENG W. Assessment of candidate fuel cladding alloys for the Canadian supercritical water-cooled reactor concept[J]. Journal of Nuclear Engineering and Radiation Science, 2016, 2(1): 011016. doi: 10.1115/1.4031502 [14] ZENG Y M, GUZONAS D. Corrosion assessment of candidate materials for fuel cladding in Canadian SCWR[J]. JOM, 2016, 68(2): 475-479. doi: 10.1007/s11837-015-1745-5 [15] 朱忠亮. 超临界水环境下电厂金属材料的氧化动力学研究[D]. 北京: 华北电力大学, 2013. [16] WANG Y Z, SUN Y, YUE M Z, et al. Reaction kinetics of chlorine corrosion to heating surfaces during coal and biomass cofiring[J]. Journal of Chemistry, 2020, 2020: 2175795. [17] NEUMANN G, TUIJN C. Self-diffusion and impurity diffusion in pure metals[M]. Oxford: Pergamon, 2008: 1-35. [18] ARIOKA K, IIJIMA Y, MIYAMOTO T. Rapid nickel diffusion in cold-worked type 316 austenitic steel at 360-500℃[J]. International Journal of Materials Research, 2017, 108(10): 791-797. doi: 10.3139/146.111542 [19] HASEGAWA M. Ellingham diagram[M]// SEETHARAMAN S. Treatise on Process Metallurgy. Boston: Elsevier, 2014: 507-516. [20] KAMAYA M. Measurement of local plastic strain distribution of stainless steel by electron backscatter diffraction[J]. Materials Characterization, 2009, 60(2): 125-132. doi: 10.1016/j.matchar.2008.07.010 [21] AINSWORTH R A. Creep cracking[M]//MILNE I, RITCHIE R O, KARIHALOO B. Comprehensive Structural Integrity. Oxford: Pergamon, 2007: 75-87. [22] KASSNER M E, HAYES T A. Creep cavitation in metals[J]. International Journal of Plasticity, 2003, 19(10): 1715-1748. doi: 10.1016/S0749-6419(02)00111-0