高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非共格晶界及其偏析对3C-SiC在超临界二氧化碳中氧化影响的Reaxff-MD模拟

周起印 刘珠 张乐福 龙家琛 郭相龙

周起印, 刘珠, 张乐福, 龙家琛, 郭相龙. 非共格晶界及其偏析对3C-SiC在超临界二氧化碳中氧化影响的Reaxff-MD模拟[J]. 核动力工程, 2023, 44(5): 284-289. doi: 10.13832/j.jnpe.2023.05.0284
引用本文: 周起印, 刘珠, 张乐福, 龙家琛, 郭相龙. 非共格晶界及其偏析对3C-SiC在超临界二氧化碳中氧化影响的Reaxff-MD模拟[J]. 核动力工程, 2023, 44(5): 284-289. doi: 10.13832/j.jnpe.2023.05.0284
Zhou Qiyin, Liu Zhu, Zhang Lefu, Long Jiachen, Guo Xianglong. Reaxff-MD Simulation of the Effect of Incoherent Grain Boundaries and Its Segregation on Oxidation of 3C-SiC in Supercritical Carbon Dioxide[J]. Nuclear Power Engineering, 2023, 44(5): 284-289. doi: 10.13832/j.jnpe.2023.05.0284
Citation: Zhou Qiyin, Liu Zhu, Zhang Lefu, Long Jiachen, Guo Xianglong. Reaxff-MD Simulation of the Effect of Incoherent Grain Boundaries and Its Segregation on Oxidation of 3C-SiC in Supercritical Carbon Dioxide[J]. Nuclear Power Engineering, 2023, 44(5): 284-289. doi: 10.13832/j.jnpe.2023.05.0284

非共格晶界及其偏析对3C-SiC在超临界二氧化碳中氧化影响的Reaxff-MD模拟

doi: 10.13832/j.jnpe.2023.05.0284
基金项目: 超临界水冷堆核能系统材料与化学研发(2018YFE0116200)
详细信息
    作者简介:

    周起印(1995—),男,博士研究生,现主要从事核材料腐蚀失效方面的研究,E-mail: recovered@sjtu.edu.cn

    通讯作者:

    张乐福,E-mail: lfzhang@sjtu.edu.cn

  • 中图分类号: TL341

Reaxff-MD Simulation of the Effect of Incoherent Grain Boundaries and Its Segregation on Oxidation of 3C-SiC in Supercritical Carbon Dioxide

  • 摘要: 为理解SiC材料在超临界二氧化碳(sCO2)反应堆中的腐蚀失效机理,本文通过分子动力学模拟研究了3C-SiC在sCO2环境中的氧化行为,并深入探讨了非共格晶界处元素偏析对氧化的影响。结果显示,非共格晶界区域的氧化速度比单晶快,且硅元素或碳元素的偏析均会加剧非共格晶界处的氧化。非共格晶界的加速氧化归因于晶界区域内的未完全配位硅原子,这些硅原子更容易与氧原子成键。非共格晶界的元素偏析进一步加强了非共格晶界处SiC的氧化速度,其中硅元素的偏析使硅原子更难以完全配位,这导致晶界处有更多的硅原子带较低的正电荷,而碳元素的偏析则使得晶界处自由体积更大,氧原子可以与更深层的硅原子成键。本研究揭示了3C-SiC在sCO2中的腐蚀机理以及非共格晶界加速腐蚀的原因,为SiC材料在sCO2反应堆中的退化机制提供了理论支持。

     

  • 图  1  3C-SiC-sCO2模型

    Figure  1.  3C-SiC-sCO2 Model

    图  2  3C-SiC表面随模拟时间的发展

    Figure  2.  Development of 3C-SiC Surface with Simulation Time      

    图  3  单晶模型氧化层厚度的演化

    Figure  3.  Evolution of Oxide Layer Thickness in Single Crystal Model

    图  4  (100)单晶、(111)单晶、(100-111)双晶及Si晶界偏析、C晶界偏析的 (100-111)双晶模型氧化层厚度的演化

    Figure  4.  Evolution of Oxide Layer Thickness of (100) Single Crystal, (111) Single Crystal, (100-111) Bicrystal and Si GB Segregation, C GB Segregation of (100-111) Bicrystal Model

    图  5  氧化1 ns后双晶模型的原子构型图

    Figure  5.  Atomic Configuration Diagram of Bicrystal Model after 1 ns Oxidation

    图  6  双晶模型氧化层外沿O原子的坐标

    Figure  6.  Coordinates of O Atoms at the Outer Edge of Oxide Layer in Bicrystal

    图  7  双晶模型Si原子平均电荷与x坐标的关系

    Figure  7.  Relationship Between Average Charge of Si Atom and X Coordinate in Bicrystal Model

  • [1] 董力. 超临界二氧化碳发电技术概述[J]. 中国环保产业,2017(5): 48-52. doi: 10.3969/j.issn.1006-5377.2017.05.013
    [2] 赵煜,董自春,张羽,等. 超临界二氧化碳发电系统研究进展[J]. 热能动力工程,2019, 34(1): 11-16. doi: 10.16146/j.cnki.rndlgc.2019.01.002
    [3] 吴攀,高春天,单建强. 超临界二氧化碳布雷顿循环在核能领域的应用[J]. 现代应用物理,2019, 10(3): 031202.
    [4] LEWIS T G, PARMA E J, WRIGHT S A, et al. Sandia’s supercritical CO2 direct cycle gas fast reactor (SC-GFR) concept[C]//2011 Small Modular Reactors Symposium. Washington: ASME, 2011: 91-94.
    [5] KATO Y, NITAWAKI T, MUTO Y. Medium temperature carbon dioxide gas turbine reactor[J]. Nuclear Engineering and Design, 2004, 230(1-3): 195-207. doi: 10.1016/j.nucengdes.2003.12.002
    [6] SUBRAMANIAN G O, KIM S H, JANG C. The carburization behavior of alloy 800HT in high temperature supercritical-CO2[J]. Materials Letters, 2021, 299: 130067. doi: 10.1016/j.matlet.2021.130067
    [7] CAO G, FIROUZDOR V, SRIDHARAN K, et al. Corrosion of austenitic alloys in high temperature supercritical carbon dioxide[J]. Corrosion Science, 2012, 60: 246-255. doi: 10.1016/j.corsci.2012.03.029
    [8] PETROSKI R, BATES E, DIONNE B, et al. Design of a direct-cycle supercritical CO2 nuclear reactor with heavy water moderation[J]. Nuclear Engineering and Technology, 2022, 54(3): 877-887. doi: 10.1016/j.net.2021.09.030
    [9] ZHU S J, MIZUNO M, KAGAWA Y, et al. Creep and fatigue behavior in Hi-nicalon-fiber-reinforced silicon carbide composites at high temperatures[J]. Journal of the American Ceramic Society, 1999, 82(1): 117-128.
    [10] ZHU S, MIZUNO M, KAGAWA Y, et al. Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: a review[J]. Composites Science and Technology, 1999, 59(6): 833-851. doi: 10.1016/S0266-3538(99)00014-7
    [11] DEÁK P, KNAUP J M, HORNOS T, et al. The mechanism of defect creation and passivation at the SiC/SiO2 interface[J]. Journal of Physics D:Applied Physics, 2007, 40(20): 6242-6253. doi: 10.1088/0022-3727/40/20/S09
    [12] ITO A, AKIYAMA T, NAKAMURA K, et al. First-principles calculations for initial oxidation processes of SiC surfaces: effect of crystalline surface orientations[J]. Japanese Journal of Applied Physics, 2015, 54(10): 101301. doi: 10.7567/JJAP.54.101301
    [13] LIU C, XI J Q, SZLUFARSKA I. Sensitivity of SiC grain boundaries to oxidation[J]. The Journal of Physical Chemistry C, 2019, 123(18): 11546-11554. doi: 10.1021/acs.jpcc.9b00068
    [14] DOYLE P J, ZINKLE S, RAIMAN S S. Hydrothermal corrosion behavior of CVD SiC in high temperature water[J]. Journal of Nuclear Materials, 2020, 539: 152241. doi: 10.1016/j.jnucmat.2020.152241
    [15] PARK J Y, KIM I H, JUNG Y I, et al. Long-term corrosion behavior of CVD SiC in 360℃ water and 400℃ steam[J]. Journal of Nuclear Materials, 2013, 443(1-3): 603-607. doi: 10.1016/j.jnucmat.2013.07.058
    [16] CANCINO-TREJO F, NAVARRO-SOLIS D J, LÓPEZ-HONORATO E, et al. Grain boundary complexions in silicon carbide[J]. Journal of the American Ceramic Society, 2018, 101(3): 1009-1013. doi: 10.1111/jace.15300
    [17] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. doi: 10.1006/jcph.1995.1039
    [18] FOGARTY J C, AKTULGA H M, GRAMA A Y, et al. A reactive molecular dynamics simulation of the silica-water interface[J]. The Journal of Chemical Physics, 2010, 132(17): 174704. doi: 10.1063/1.3407433
    [19] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
    [20] CHEN X H, SUN Z G, CHEN Z Z, et al. ReaxFF molecular dynamics simulation of oxidation behavior of 3C-SiC in O2 and CO2[J]. Computational Materials Science, 2021, 191: 110341. doi: 10.1016/j.commatsci.2021.110341
    [21] ŠIMONKA V, HÖSSINGER A, WEINBUB J, et al. ReaxFF reactive molecular dynamics study of orientation dependence of initial silicon carbide oxidation[J]. The Journal of Physical Chemistry A, 2017, 121(46): 8791-8798. doi: 10.1021/acs.jpca.7b08983
  • 加载中
图(7)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  57
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-18
  • 修回日期:  2023-01-04
  • 刊出日期:  2023-10-13

目录

    /

    返回文章
    返回