Conceptual Design Optimization of Uranium-zirconium Alloy Fuel Core for Modular Lead-based Fast Reactor
-
摘要: 为深入研究第四代核能系统堆型之一铅基快堆的物理性能,进一步提高模块化铅基快堆的安全性和经济性,对铀锆合金燃料装载的不同功率水平的模块化铅基快堆堆芯特性进行研究,发现当堆芯功率提升至一定水平时,堆芯的增殖优势在规定寿期内不能得到充分释放。基于此现象,对模块化铅基快堆铀锆合金燃料堆芯的概念设计进行优化,基于堆芯功率水平和寿期,选择合适的栅距棒径比和燃料芯体有效密度,通过调整单位体积内的铀装量和235U装量调整堆芯的增殖性能,最终使堆芯反应性变化与堆芯功率、寿期基本匹配,寿期内堆芯反应性几乎不发生变化。优化后降低了堆芯反应性控制难度,充分利用了堆芯的增殖性能,同时合理的栅距棒径比为堆芯热工分析提供了安全和设计裕量,有效提高了堆芯的经济性和安全性。Abstract: In order to deeply study the physical properties of lead-based fast reactor, one of the reactor types of the fourth generation nuclear energy system, and further improve the safety and economy of modular lead-based fast reactor, the core characteristics of modular lead-based fast reactor with different power levels loaded with uranium-zirconium alloy fuel were studied, and it was found that when the core power was raised to a certain level, the breeding advantage of the core could not be fully released within the specified life. Based on this phenomenon, the conceptual design of modular lead-based fast reactor uranium-zirconium alloy fuel core is optimized. Based on the core power level and service life, the appropriate ratio of grid spacing to rod diameter and the effective density of fuel core are selected, and the breeding performance of core is adjusted by adjusting the uranium loading per unit volume and the 235U loading. Finally, the core reactivity changes are basically matched with the core power and service life, so that the core reactivity hardly changes during the service life. The optimization not only reduces the difficulty of core reactivity control, but also makes full use of the breeding performance of the core. At the same time, the reasonable ratio of grid spacing to rod diameter provides safety and design margin for thermal analysis of the core, which effectively improves the economy and safety of the core.
-
表 1 组件主要设计参数
Table 1. Main Design Parameters of Assembly
参数名 参数值 参数名 参数值 燃料芯体直径/mm 8.0 组件中心距/mm 93.5 气隙厚度/mm 0.1 组件盒内对边距/mm 88.0 包壳厚度/mm 0.5 组件盒内外边距/mm 93.0 包壳外直径/mm 9.2 组件盒厚度/mm 2.5 燃料棒中心距/mm 10.9 组件内燃料棒数目/根 61 燃料有效温度/K 900 冷却剂温度/K 700 表 2 各堆芯方案设计参数
Table 2. Design Parameters of Each Core Scheme
设计参数 堆芯方案 1 2 3 4 5 反应堆热功率/MW 100 300 500 700 1000 燃耗寿期/EFPD 2000 2000 2000 2000 2000 燃料芯块密度/(g·cm−3) 11.94 11.94 11.94 11.94 11.94 燃料芯体类型 U-10Zr U-10Zr U-10Zr U-10Zr U-10Zr 寿期初235U质量/kg 882 2025 2930 4143 5952 寿期初238U质量/kg 3895 12242 19673 28510 42912 寿期末235U质量/kg 668 1425 1970 2782 3955 寿期末238U质量/kg 3762 11714 18711 27008 40605 寿期末239Pu质量/kg 94 372 667 964 1441 235U利用率/% 24.32 29.64 32.77 32.85 33.55 238U利用率/% 3.42 4.32 4.89 5.27 5.38 燃料富集度/% 19.50 15.00 14.00 14.00 13.50 18.50 14.00 12.50 13.00 12.50 17.50 13.50 12.00 12.00 11.50 10.00 10.00 燃料组件数量 344 433 686 991 1483 控制棒组件数量 18 36 35 36 30 活性区高度/mm 1000 1000 1000 1000 1000 活性区直径/mm 1300 2200 2700 3300 3900 平均燃料富集度/% 16.62 12.77 11.67 11.42 10.96 堆芯线功率密度/(W·cm−1) 11.31 11.36 11.95 11.58 11.05 堆芯体功率密度/(W·cm−3) 91.09 91.51 96.27 93.30 89.06 寿期初堆芯keff 1.059786 1.027194 1.009590 1.012693 1.012008 寿期末堆芯keff 1.008881 1.005588 1.009543 1.017490 1.023341 keff—有效增殖因子 表 3 优化栅距棒径比前后各堆芯方案设计参数
Table 3. Design Parameters of Each Core Scheme before and after Optimization of the Ratio of Grid Spacing to Rod Diameter
设计参数 堆芯方案 4 4-O1 4-O2 5 5-O1 5-O2 反应堆热功率/MW 700 700 700 1000 1000 1000 燃耗寿期/EFPD 2000 2000 2000 2000 2000 2000 燃料棒中心距/mm 10.9 11.2 12.5 10.9 12.0 12.5 组件中心距/mm 93.5 96.5 105.5 93.5 103.5 105.5 组件盒内对边距/mm 88.0 91.0 100.0 88.0 98.0 100.0 组件盒内外边距/mm 93.0 96.0 105.0 93.0 103.0 105.0 寿期初235U质量/kg 4143 4183 4633 5952 6441 6579 寿期初238U质量/kg 28510 28470 28020 42912 42423 42285 寿期末235U质量/kg 2782 2884 3212 3955 4448 4568 寿期末238U质量/kg 27008 27153 26765 40605 40509 40402 寿期末239Pu质量/kg 964 914 901 1441 1379 1362 235U利用率/% 32.85 31.05 30.67 33.55 30.94 30.57 238U利用率/% 5.27 4.63 4.48 5.38 4.51 4.45 燃料富集度/% 14.00 14.00 15.50 13.50 14.50 14.70 13.00 13.00 14.50 12.50 13.50 13.70 12.00 12.00 13.50 11.50 12.50 12.70 10.00 11.00 11.50 10.00 11.00 11.70 平均燃料富集度/% 11.42 11.53 12.77 10.96 11.86 12.12 堆芯线功率密度/(W·cm−1) 11.58 11.58 11.58 11.05 11.05 11.05 堆芯体功率密度/(W·cm−3) 93.30 87.59 73.28 89.06 72.69 69.96 寿期初堆芯keff 1.012693 1.008185 1.022413 1.012008 1.009678 1.014986 寿期末堆芯keff 1.017490 1.007989 1.005618 1.023341 1.006486 1.008197 表 4 优化燃料芯体密度前后各堆芯方案设计参数
Table 4. Design Parameters of Each Core Scheme before and after Optimization of the Density of Fuel Pin
设计参数 堆芯方案 4 4-O3 4-O4 反应堆热功率/MW 700 700 700 燃耗寿期/EFPD 2000 2000 2000 燃料芯体有效密度份额/% 75 70 65 燃料芯体密度/(g·cm−3) 11.940 11.144 10.384 寿期初235U质量/kg 4143 3965 3908 寿期初238U质量/kg 28510 26511 24391 寿期末235U质量/kg 2782 2616 2542 寿期末238U质量/kg 27008 25112 23095 寿期末239Pu质量/kg 964 937 886 235U利用率/% 32.85 34.02 34.95 238U利用率/% 5.27 5.28 5.31 燃料富集度/% 14.00 14.20 15.00 13.00 13.20 14.00 12.00 12.20 13.00 10.00 11.20 12.00 平均燃料富集度/% 11.42 11.71 12.43 寿期初堆芯keff 1.012693 1.008178 1.018577 寿期末堆芯keff 1.017490 1.008019 1.005044 -
[1] ZRODNIKOV A V, CHITAIKIN V I, TOSHINSKII G I, et al. Nuclear power plants based on reactor modules with SVBR-75/100[J]. Atomic Energy, 2001, 91(6): 957-966. doi: 10.1023/A:1014862701400 [2] ZRODNIKOV A V, TOSHINSKY G I, KOMLEV O G, et al. Innovative nuclear technology based on modular multi-purpose lead-bismuth cooled fast reactors[J]. Progress in Nuclear Energy, 2008, 50(2-6): 170-178. doi: 10.1016/j.pnucene.2007.10.025 [3] ZRODNIKOV A V, TOSHINSKY G I, KOMLEV O, et al. Fuel cycle of reactor SVBR-100[C]//Proceedings of Global 2009. Paris, France, 2009 [4] DRAGUNOV Y G, LEMEKHOV V V, SMIRNOV V S, et al. Technical solutions and development stages for the BREST-OD-300 reactor unit[J]. Atomic Energy, 2012, 113(1): 70-77. doi: 10.1007/s10512-012-9597-3 [5] GRASSO G, PETROVICH C, MATTIOLI D, et al. The core design of ALFRED, a demonstrator for the European lead-cooled reactors[J]. Nuclear Engineering and Design, 2014, 278: 287-301. doi: 10.1016/j.nucengdes.2014.07.032 [6] WANG K, LI Z G, SHE D, et al. RMC-A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048 [7] ZHAO C, LOU L, PENG X J, et al. Application of the spectral-shift effect in the small lead-based reactor SLBR-50[J]. Frontiers in Energy Research, 2021, 9: 756106. doi: 10.3389/fenrg.2021.756106