高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模块化铅基快堆铀锆合金燃料堆芯概念设计优化

娄磊 王连杰 陈长 赵晨 周冰燕 严明宇 马党伟

娄磊, 王连杰, 陈长, 赵晨, 周冰燕, 严明宇, 马党伟. 模块化铅基快堆铀锆合金燃料堆芯概念设计优化[J]. 核动力工程, 2023, 44(6): 1-8. doi: 10.13832/j.jnpe.2023.06.0001
引用本文: 娄磊, 王连杰, 陈长, 赵晨, 周冰燕, 严明宇, 马党伟. 模块化铅基快堆铀锆合金燃料堆芯概念设计优化[J]. 核动力工程, 2023, 44(6): 1-8. doi: 10.13832/j.jnpe.2023.06.0001
Lou Lei, Wang Lianjie, Chen Chang, Zhao Chen, Zhou Bingyan, Yan Mingyu, Ma Dangwei. Conceptual Design Optimization of Uranium-zirconium Alloy Fuel Core for Modular Lead-based Fast Reactor[J]. Nuclear Power Engineering, 2023, 44(6): 1-8. doi: 10.13832/j.jnpe.2023.06.0001
Citation: Lou Lei, Wang Lianjie, Chen Chang, Zhao Chen, Zhou Bingyan, Yan Mingyu, Ma Dangwei. Conceptual Design Optimization of Uranium-zirconium Alloy Fuel Core for Modular Lead-based Fast Reactor[J]. Nuclear Power Engineering, 2023, 44(6): 1-8. doi: 10.13832/j.jnpe.2023.06.0001

模块化铅基快堆铀锆合金燃料堆芯概念设计优化

doi: 10.13832/j.jnpe.2023.06.0001
详细信息
    作者简介:

    娄 磊(1988—),男,高级工程师,现主要从事反应堆物理设计研究工作,E-mail: 371682011@qq.com

    通讯作者:

    王连杰,E-mail: mcd2264@126.com

  • 中图分类号: TL329

Conceptual Design Optimization of Uranium-zirconium Alloy Fuel Core for Modular Lead-based Fast Reactor

  • 摘要: 为深入研究第四代核能系统堆型之一铅基快堆的物理性能,进一步提高模块化铅基快堆的安全性和经济性,对铀锆合金燃料装载的不同功率水平的模块化铅基快堆堆芯特性进行研究,发现当堆芯功率提升至一定水平时,堆芯的增殖优势在规定寿期内不能得到充分释放。基于此现象,对模块化铅基快堆铀锆合金燃料堆芯的概念设计进行优化,基于堆芯功率水平和寿期,选择合适的栅距棒径比和燃料芯体有效密度,通过调整单位体积内的铀装量和235U装量调整堆芯的增殖性能,最终使堆芯反应性变化与堆芯功率、寿期基本匹配,寿期内堆芯反应性几乎不发生变化。优化后降低了堆芯反应性控制难度,充分利用了堆芯的增殖性能,同时合理的栅距棒径比为堆芯热工分析提供了安全和设计裕量,有效提高了堆芯的经济性和安全性。

     

  • 图  1  燃料组件示意图

    Figure  1.  Schematic Diagram of Fuel Assembly

    图  2  各方案堆芯布置示意图

    Figure  2.  Schematic Diagram of Core Layout for Each Scheme

    图  3  各方案堆芯keff随燃耗寿期变化曲线

    Figure  3.  Variation Curve of Core keff with Burnup for Each Scheme     

    图  4  优化栅距棒径比前后各方案堆芯keff随堆芯寿期变化曲线    

    Figure  4.  Variation Curve of Core keff with Core Life for Each Scheme before and after Optimization of the Ratio of Grid Spacing to Rod Diameter

    图  5  优化燃料芯体密度前后各方案堆芯keff随堆芯寿期变化曲线

    Figure  5.  Variation Curve of Core keff with Core Life for Each Scheme before and after Optimization of the Density of Fuel Pin

    表  1  组件主要设计参数

    Table  1.   Main Design Parameters of Assembly

    参数名参数值参数名参数值
    燃料芯体直径/mm8.0组件中心距/mm93.5
    气隙厚度/mm0.1组件盒内对边距/mm88.0
    包壳厚度/mm0.5组件盒内外边距/mm93.0
    包壳外直径/mm9.2组件盒厚度/mm2.5
    燃料棒中心距/mm10.9组件内燃料棒数目/根61
    燃料有效温度/K900冷却剂温度/K700
    下载: 导出CSV

    表  2  各堆芯方案设计参数

    Table  2.   Design Parameters of Each Core Scheme

    设计参数堆芯方案
    12345
    反应堆热功率/MW1003005007001000
    燃耗寿期/EFPD20002000200020002000
    燃料芯块密度/(g·cm−3)11.9411.9411.9411.9411.94
    燃料芯体类型U-10ZrU-10ZrU-10ZrU-10ZrU-10Zr
    寿期初235U质量/kg8822025293041435952
    寿期初238U质量/kg389512242196732851042912
    寿期末235U质量/kg6681425197027823955
    寿期末238U质量/kg376211714187112700840605
    寿期末239Pu质量/kg943726679641441
    235U利用率/%24.3229.6432.7732.8533.55
    238U利用率/%3.424.324.895.275.38
    燃料富集度/%19.5015.0014.0014.0013.50
    18.5014.0012.5013.0012.50
    17.5013.5012.0012.0011.50
    10.0010.00
    燃料组件数量3444336869911483
    控制棒组件数量1836353630
    活性区高度/mm10001000100010001000
    活性区直径/mm13002200270033003900
    平均燃料富集度/%16.6212.7711.6711.4210.96
    堆芯线功率密度/(W·cm−1)11.3111.3611.9511.5811.05
    堆芯体功率密度/(W·cm−3)91.0991.5196.2793.3089.06
    寿期初堆芯keff1.0597861.0271941.0095901.0126931.012008
    寿期末堆芯keff1.0088811.0055881.0095431.0174901.023341
      keff—有效增殖因子
    下载: 导出CSV

    表  3  优化栅距棒径比前后各堆芯方案设计参数

    Table  3.   Design Parameters of Each Core Scheme before and after Optimization of the Ratio of Grid Spacing to Rod Diameter

    设计参数堆芯方案
    44-O14-O255-O15-O2
    反应堆热功率/MW700700700100010001000
    燃耗寿期/EFPD200020002000200020002000
    燃料棒中心距/mm10.911.212.510.912.012.5
    组件中心距/mm93.596.5105.593.5103.5105.5
    组件盒内对边距/mm88.091.0100.088.098.0100.0
    组件盒内外边距/mm93.096.0105.093.0103.0105.0
    寿期初235U质量/kg414341834633595264416579
    寿期初238U质量/kg285102847028020429124242342285
    寿期末235U质量/kg278228843212395544484568
    寿期末238U质量/kg270082715326765406054050940402
    寿期末239Pu质量/kg964914901144113791362
    235U利用率/%32.8531.0530.6733.5530.9430.57
    238U利用率/%5.274.634.485.384.514.45
    燃料富集度/%14.0014.0015.5013.5014.5014.70
    13.0013.0014.5012.5013.5013.70
    12.0012.0013.5011.5012.5012.70
    10.0011.0011.5010.0011.0011.70
    平均燃料富集度/%11.4211.5312.7710.9611.8612.12
    堆芯线功率密度/(W·cm−1)11.5811.5811.5811.0511.0511.05
    堆芯体功率密度/(W·cm−3)93.3087.5973.2889.0672.6969.96
    寿期初堆芯keff1.0126931.0081851.0224131.0120081.0096781.014986
    寿期末堆芯keff1.0174901.0079891.0056181.0233411.0064861.008197
    下载: 导出CSV

    表  4  优化燃料芯体密度前后各堆芯方案设计参数

    Table  4.   Design Parameters of Each Core Scheme before and after Optimization of the Density of Fuel Pin

    设计参数堆芯方案
    44-O34-O4
    反应堆热功率/MW700700700
    燃耗寿期/EFPD200020002000
    燃料芯体有效密度份额/%757065
    燃料芯体密度/(g·cm−3)11.94011.14410.384
    寿期初235U质量/kg414339653908
    寿期初238U质量/kg285102651124391
    寿期末235U质量/kg278226162542
    寿期末238U质量/kg270082511223095
    寿期末239Pu质量/kg964937886
    235U利用率/%32.8534.0234.95
    238U利用率/%5.275.285.31
    燃料富集度/%14.0014.2015.00
    13.0013.2014.00
    12.0012.2013.00
    10.0011.2012.00
    平均燃料富集度/%11.4211.7112.43
    寿期初堆芯keff1.0126931.0081781.018577
    寿期末堆芯keff1.0174901.0080191.005044
    下载: 导出CSV
  • [1] ZRODNIKOV A V, CHITAIKIN V I, TOSHINSKII G I, et al. Nuclear power plants based on reactor modules with SVBR-75/100[J]. Atomic Energy, 2001, 91(6): 957-966. doi: 10.1023/A:1014862701400
    [2] ZRODNIKOV A V, TOSHINSKY G I, KOMLEV O G, et al. Innovative nuclear technology based on modular multi-purpose lead-bismuth cooled fast reactors[J]. Progress in Nuclear Energy, 2008, 50(2-6): 170-178. doi: 10.1016/j.pnucene.2007.10.025
    [3] ZRODNIKOV A V, TOSHINSKY G I, KOMLEV O, et al. Fuel cycle of reactor SVBR-100[C]//Proceedings of Global 2009. Paris, France, 2009
    [4] DRAGUNOV Y G, LEMEKHOV V V, SMIRNOV V S, et al. Technical solutions and development stages for the BREST-OD-300 reactor unit[J]. Atomic Energy, 2012, 113(1): 70-77. doi: 10.1007/s10512-012-9597-3
    [5] GRASSO G, PETROVICH C, MATTIOLI D, et al. The core design of ALFRED, a demonstrator for the European lead-cooled reactors[J]. Nuclear Engineering and Design, 2014, 278: 287-301. doi: 10.1016/j.nucengdes.2014.07.032
    [6] WANG K, LI Z G, SHE D, et al. RMC-A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048
    [7] ZHAO C, LOU L, PENG X J, et al. Application of the spectral-shift effect in the small lead-based reactor SLBR-50[J]. Frontiers in Energy Research, 2021, 9: 756106. doi: 10.3389/fenrg.2021.756106
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  56
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-12
  • 修回日期:  2023-02-16
  • 网络出版日期:  2023-12-11
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回