Anisotropic SP3 Two-Step Method for Reactor Cores with Strong Absorbers
-
摘要: 核反应堆堆芯中出现的强吸收体,尤其是可移动的控制棒,会显著增强堆芯内中子角注量率的角度各向异性效应,传统的各向同性SP3两步法不能进行有效刻画,需要构建各向异性SP3两步法。本文首先从2个方面研究各向异性效应;推导了各向异性SP3方程,建立了适用于各向异性SP3方程的均匀化模型。通过材料试验堆(MTR)对本文方法进行验证与分析。结果表明,本文研究的各向异性SP3方程及其均匀化方法较之传统计算方法偏差更小,对于有效增殖系数(keff)和功率分布改善较为明显。因此,本文研究的各向异性SP3两步法能够有效处理含强吸收体堆芯问题。Abstract: The strong absorber in the core of nuclear reactor, especially the movable control rod, will significantly enhance the angular anisotropy effect of neutron angular fluence in the core. The traditional isotropic SP3 two-step method cannot capture the feature effectively, therefore, the anisotropic SP3 two-step method needs to be constructed. Firstly, this paper studies the anisotropic effect from two aspects; the anisotropic SP3 equation is derived, and a homogenization model suitable for anisotropic SP3 equation is established. The methodology proposed in this paper was validated and analyzed through the Material Test Reactor (MTR). The results show that the anisotropy SP3 equation and its homogenization method in this paper have smaller deviation than the traditional calculation method, and the effective multiplication factor (keff) and power distribution are obviously improved. Therefore, the anisotropic SP3 two-step method in this paper can effectively deal with the core problem with strong absorbers.
-
Key words:
- Strong absorber /
- Fine-mesh homogenization /
- Anisotropic SP3 /
- Material Test Reactor
-
表 1 不同散射阶数keff计算结果及偏差
Table 1. keff Results and Deviations of Different Scattering Orders
计算方式 不插控制棒 Ag-In-Cd控制棒 Hf控制棒 B4C控制棒 keff 偏差/pcm keff 偏差/pcm keff 偏差/pcm keff 偏差/pcm 参考解 1.52785 — 0.84798 — 0.83830 — 0.72975 — Inflow 1.52755 –30 0.85518 +720 0.84516 +686 0.74195 +1220 P1 1.52829 +44 0.84343 –455 0.83226 –604 0.72414 –561 P2 1.52834 +49 0.84806 +8 0.83732 –98 0.73081 +106 P3 1.52832 +47 0.84789 –9 0.83719 –111 0.73087 +112 表 2 MTR中2种燃料元件的几何与材料信息
Table 2. Geometric and Material Parameters of 2 Fuel Elements in MTR
参数名称 标准燃料元件 控制燃料元件 组件尺寸/cm 7.7×8.1 7.7×8.1 燃料材料 UAlx-Al UAlx-Al 燃料
富集度/%LEU 20 20 MEU 45 45 HEU 93 93 燃料板数 23 17 燃料板厚度/cm 0.051 0.051 燃料板长度/cm 6.3 6.3 包壳材料 Al Al 包壳厚度/cm 0.038 0.038 板间厚度/cm 0.223 0.223 控制棒材料 — Ag-In-Cd LEU—低浓铀;MEU—中浓铀;HEU—高浓铀 表 3 新型均匀化模型计算结果
Table 3. Calculation Results of New Homogenization Model
计算方式 参考解 keff keff偏差/
pcm均方根
偏差/%最大
偏差/%各向异性SP3(P2) 1.05931 1.05979 +48 0.47 2.10 各向同性SP3(P2) 1.07745 +1814 6.92 −11.46 各向同性SP3(Inflow) 1.05702 −229 0.66 2.64 表 4 二维MTR堆芯问题计算结果
Table 4. Results of 2D MTR Core Problem
keff 功率分布偏差/% 参考值 计算值 偏差/pcm 均方根 最大值 1.01545 1.01616 +71 0.97 3.72 -
[1] PALMTAG S P. Advanced nodal methods for MOX fuel analysis[D]. Cambridge: Massachusetts Institute of Technology, 1997. [2] TATSUMI M, YAMAMOTO A. Advanced PWR core calculation based on multi-group nodal-transport method in three-dimensional pin-by-pin geometry[J]. Journal of Nuclear Science and Technology, 2003, 40(6): 376-387. doi: 10.1080/18811248.2003.9715369 [3] YANG W, ZHENG Y Q, WU H C, et al. High-performance whole core pin-by-pin calculation based on EFEN-SP3 method[J]. Nuclear Power Engineering, 2014, 35(5): 164-167. [4] TATSUMI M, OHOKA Y, ENDO T, et al. Verification and validation of AEGIS/SCOPE2: the state-of-the-art in-core fuel management system for PWRs[C]//18th International Conference on Nuclear Engineering. Xi’an: American Society of Mechanical Engineers, 2010,doi: 10.1115/ICONE18-29154. [5] GRUNDMANN U, MITTAG S. Super-homogenisation factors in pinwise calculations by the reactor dynamics code DYN3D[J]. Annals of Nuclear Energy, 2011, 38(10): 2111-2119. doi: 10.1016/j.anucene.2011.06.030 [6] LIU S C, WANG G B, LIANG J G, et al. Burnup-dependent core neutronics analysis of plate-type research reactor using deterministic and stochastic methods[J]. Annals of Nuclear Energy, 2015, 85: 830-836. doi: 10.1016/j.anucene.2015.06.041 [7] MARLEAU G, HÉBERT A, ROY R. A user guide for DRAGON version DRAGON_000331 Realease 3.04, IGE-174[Z]. 2000 [8] HÉBERT A, SEKKI D, CHAMBON R. A user guide for DONJON version4: IGE-300[R]. Montréal: École Polytechnique de Montréal, 2013. [9] MA J M, WANG G B, YUAN S, et al. An improved assembly homogenization approach for plate-type research reactor[J]. Annals of Nuclear Energy, 2015, 85: 1003-1013. doi: 10.1016/j.anucene.2015.07.018 [10] 汤春桃. 中子输运方程特征线解法及嵌入式组件均匀化方法的研究[D]. 上海: 上海交通大学, 2009. [11] CHAUDRI K S, MIRZA S M. Burnup dependent Monte Carlo neutron physics calculations of IAEA MTR benchmark[J]. Progress in Nuclear Energy, 2015, 81: 43-52. doi: 10.1016/j.pnucene.2014.12.018 [12] SHAABAN I, ALBARHOUM M. Performance of the MTR core with MOX fuel using the MCNP4C2 code[J]. Applied Radiation and Isotopes, 2016, 114: 92-103. doi: 10.1016/j.apradiso.2016.05.009 [13] ALAWNEH L M, PARK C J, JARADAT M K, et al. Burnup estimation for plate type fuel assembly of research reactors through the least square fitting method[J]. Annals of Nuclear Energy, 2014, 71: 37-45. doi: 10.1016/j.anucene.2014.03.029 [14] MARGULIS M, GILAD E. Monte Carlo and nodal neutron physics calculations of the IAEA MTR benchmark using Serpent/DYN3D code system[J]. Progress in Nuclear Energy, 2016, 88: 118-133. doi: 10.1016/j.pnucene.2015.12.008 [15] YAMAMOTO A, KITAMURA Y, YAMANE Y. Simplified treatments of anisotropic scattering in LWR core calculations[J]. Journal of Nuclear Science and Technology, 2008, 45(3): 217-229. doi: 10.1080/18811248.2008.9711430 [16] XIA F, ZU T J, WU H C. Effect and treatment of angular dependency of multi-group total cross section and anisotropic scattering in fine-mesh transport calculation[J]. Annals of Nuclear Energy, 2018, 114: 110-121. doi: 10.1016/j.anucene.2017.11.049 [17] USHIO T, TAKEDA T, MORI M. Neutron anisotropic scattering effect in heterogeneous cell calculations of light water reactors[J]. Journal of Nuclear Science and Technology, 2003, 40(7): 464-480. doi: 10.1080/18811248.2003.9715381 [18] GELBARD E M. Application of spherical harmonics method to reactor problems: WAPD-T-1182[R]. West Mifflin: Bettis Atomic Power Laboratory, 1960 [19] NELSON A. Improved convergence rate of multi-group scattering moment tallies for Monte Carlo neutron transport codes[D]. Michigan: University of Michigan, 2014. [20] WANG S C, CAO L Z, LI Y Z, et al. An energy-group structure optimization from seven to four for PWR-core pin-by-pin calculation[J]. Nuclear Engineering and Design, 2023, 402: 112115. doi: 10.1016/j.nucengdes.2022.112115 [21] IAEA. Research reactor core conversion from the use of highly enriched uranium fuels: guidebook[M]. Vienna: International Atomic Energy Agency, 1980: 39-45. [22] LI Y Z, ZHANG B, HE Q M, et al. Development and verification of PWR-core fuel management calculation code system NECP-bamboo: part I bamboo-lattice[J]. Nuclear Engineering and Design, 2018, 335: 432-440. doi: 10.1016/j.nucengdes.2018.05.030