高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压水堆三维全堆芯Pin-by-pin瞬态分析

秦浚玮 李云召 王昆鹏 吴宏春 曹良志

秦浚玮, 李云召, 王昆鹏, 吴宏春, 曹良志. 压水堆三维全堆芯Pin-by-pin瞬态分析[J]. 核动力工程, 2023, 44(6): 32-38. doi: 10.13832/j.jnpe.2023.06.0032
引用本文: 秦浚玮, 李云召, 王昆鹏, 吴宏春, 曹良志. 压水堆三维全堆芯Pin-by-pin瞬态分析[J]. 核动力工程, 2023, 44(6): 32-38. doi: 10.13832/j.jnpe.2023.06.0032
Qin Junwei, Li Yunzhao, Wang Kunpeng, Wu Hongchun, Cao Liangzhi. Three-Dimensional Pin-by-pin Transient Analysis for PWR-Core[J]. Nuclear Power Engineering, 2023, 44(6): 32-38. doi: 10.13832/j.jnpe.2023.06.0032
Citation: Qin Junwei, Li Yunzhao, Wang Kunpeng, Wu Hongchun, Cao Liangzhi. Three-Dimensional Pin-by-pin Transient Analysis for PWR-Core[J]. Nuclear Power Engineering, 2023, 44(6): 32-38. doi: 10.13832/j.jnpe.2023.06.0032

压水堆三维全堆芯Pin-by-pin瞬态分析

doi: 10.13832/j.jnpe.2023.06.0032
基金项目: 国家自然科学基金(11975181)
详细信息
    作者简介:

    秦浚玮(1998—),男,博士研究生,现主要从事压水堆瞬态分析方面的研究,E-mail: qinjunwei@stu.xjtu.edu.cn

    通讯作者:

    李云召,E-mail: yunzhao@xjtu.edu.cn

  • 中图分类号: TL32

Three-Dimensional Pin-by-pin Transient Analysis for PWR-Core

  • 摘要: 为了保证核反应堆在瞬态过程中的安全性,需要进行三维全堆芯的瞬态分析,给出安全分析关注的燃料棒功率分布。本研究建立了压水堆三维全堆芯Pin-by-pin核热耦合瞬态分析的理论模型:采用全隐式向后差分方法和指数函数展开节块法实现了三维全堆芯Pin-by-pin时空中子动力学计算;采用栅元尺度的多通道模型进行三维全堆芯Pin-by-pin热工反馈计算;采用Picard迭代实现了核热紧耦合迭代计算;利用信息传递接口(MPI)并行技术,采用统一的空间区域分解方式,实现了核热耦合瞬态过程的并行计算。基于理论模型,开发了相应的程序Bamboo-Transient2.0,采用基准题和多组件问题对程序进行验证,并将其应用于商用压水堆瞬态分析。结果表明:Pin-by-pin瞬态分析程序较之组件均匀化的粗网扩散程序结果更加精细,有效改善了棒功率分布的偏差,同时能够给出栅元尺度下的各状态参数分布情况,可直接满足安全分析需求。

     

  • 图  1  不同物理场网格划分方式

    Figure  1.  Meshing Methods for Different Physical Fields

    图  2  物理场、热场和流场转换关系

    Figure  2.  Conversion Relationship among Physical Field, Thermal Field and Flow Field

    图  3  核热耦合迭代流程图

    Figure  3.  Iterative Flowchart of Neutronic-thermohydraulic Coupling

    图  4  三维LMW基准题归一化功率示意图

    Figure  4.  Normalized Power of 3D LMW

    图  5  二维多组件问题径向几何

    Figure  5.  Radial Geometry of 2D Multi-assemblies

    图  6  二维多组件问题归一化功率

    Figure  6.  Normalized Power of 2D Multi-assemblies

    图  7  棒功率偏差分布示意图

    Figure  7.  Pin-cell Power Deviation Distribution

    图  8  AP1000机组的归一化功率

    Figure  8.  Normalized Power of AP1000

    图  9  不同时刻的堆芯三维分布

    Figure  9.  Three-dimensional Distributions of the Core at Different Time

    表  1  不同CPU数目计算时间及并行效率

    Table  1.   Calculation Time and Parallel Efficiency for Different CPU Number

    CPU数目 计算时间/s 并行效率/%
    1 268.5 100
    2 147.1 91.3
    4 78.2 85.8
    8 42.7 78.6
    下载: 导出CSV

    表  2  棒功率分布偏差随时间变化情况

    Table  2.   Deviation of Pin-cell Power Distribution at Different Time

    时刻/s 最大偏差
    (SP3)/%
    均方根偏差
    (SP3)/%
    最大偏差
    (扩散)/%
    均方根偏差
    (扩散)/%
    0.5 −1.7861 0.6606 −2.6712 1.0025
    1.0 −3.3670 1.3333 −4.0070 1.6127
    2.0 0.9454 0.3019 −1.3593 0.5355
    3.0 0.9433 0.3022 −1.3617 0.5354
    下载: 导出CSV
  • [1] LI Y Z, HE T, LIANG B N, et al. Development and verification of PWR-core nuclear design code system NECP-Bamboo: Part III: Bamboo-transient[J]. Nuclear Engineering and Design, 359: 110462.
    [2] GARCÍA-HERRANZ N, CUERVO D, SABATER A, et al. Multiscale neutronics/thermal-hydraulics coupling with COBAYA4 code for Pin-by-pin PWR transient analysis[J]. Nuclear Engineering and Design, 2017, 321: 38-47. doi: 10.1016/j.nucengdes.2017.03.017
    [3] GRAHN A, KLIEM S, ROHDE U. Coupling of the 3D neutron kinetic core model DYN3D with the CFD software ANSYS-CFX[J]. Annals of Nuclear Energy, 2015, 84: 197-203. doi: 10.1016/j.anucene.2014.12.015
    [4] LEE D, KOZLOWSKI T, DOWNAR T J. Multi-group SP3 approximation for simulation of a three-dimensional PWR rod ejection accident[J]. Annals of Nuclear Energy, 2015, 77(mar.):94-100.
    [5] TADA K, YAMAMOTO A, YAMANE Y, et al. Applicability of the diffusion and simplified P3 theories for pin-by-pin geometry of BWR[J]. Journal of Nuclear Science and Technology, 2008, 45(10): 997-1008. doi: 10.1080/18811248.2008.9711885
    [6] 谢伟华. 压水堆堆芯三维Pin-by-pin中子动力学计算方法研究[D]. 西安: 西安交通大学, 2018.
    [7] 杨文,郑友琦,吴宏春,等. EFEN-SP3方法的加速与并行计算研究[J]. 原子能科学技术,2013, 47(S2): 664-667.
    [8] WAND YQ, RABITI C, PALMIOTTI G. Parallelization of the red-black algorithm on solving the second-order PN transport equation with the hybrid finite element method[J]. Transactions of American Nuclear Society, 2011, 105: 319-321.
    [9] LI Y Z, ZHANG B, HE Q M, et al. Development and verification of PWR-core fuel management calculation code system NECP-Bamboo: Part I Bamboo-Lattice[J]. Nuclear Engineering and Design, 2018, 335: 432-440. doi: 10.1016/j.nucengdes.2018.05.030
    [10] YANG W, WU H C, LI Y Z, et al. Development and verification of PWR-core fuel management calculation code system NECP-Bamboo: Part II Bamboo-Core[J]. Nuclear Engineering and Design, 2018, 337: 279-290. doi: 10.1016/j.nucengdes.2018.07.017
    [11] GOLUOGLU S. A deterministic method for transient, three-dimensional neutron transport[D]. Knoxville, USA: The University of Tennessee, 1997.
    [12] SMITH M A, LEWIS E E, NA BC. Benchmark on deterministic 2-D MOX fuel assembly transport calculations without spatial homogenization[J]. Progress in Nuclear Energy, 2004, 45(2-4): 107-118
    [13] HOU J, IVANOV K N, BOYARINOV V F, et al. OECD/NEA benchmark for time-dependent neutron transport calculations without spatial homogenization[J]. Nuclear Engineering and Design, 2017, 317: 177-189. doi: 10.1016/j.nucengdes.2017.02.008
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  18
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-13
  • 修回日期:  2023-05-22
  • 网络出版日期:  2023-12-11
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回