Experimental Study on Leakage of High Temperature Sodium Heat Pipe in the Air
-
摘要: 热管冷却反应堆中的高温金属钠发生泄漏后,会与空气反应产生燃烧甚至爆炸,危害堆芯安全。针对高温状态下热管钠泄漏存在实验稀少、现象不明等问题,本文开展了钠热管顶部泄漏模拟实验,将15 g钠放入不锈钢管加热至904.8℃,在湿度13.12 g/mL的湿润空气中打开,测量过程中用压力、温度变化衡量危险程度。结果为热管泄漏会发生燃烧产生黄色火焰,发出爆炸响声,反应室中检测到压力脉冲0.081 MPa,反应室最高升温192.1℃。实验结果(包括实验现象和泄漏过程分析)为后续热管冷却堆的设计和安全评估提供了参考。Abstract: After the leakage of high temperature sodium metal in the heat pipe cooled reactor, it will react with air to produce combustion and even explosion, which will endanger the safety of the reactor core. The research on sodium leakage of heat pipe at high temperature is faced with some problems, such as few experiments and unknown phenomena. In this paper, simulation experiments of sodium heat pipe top leakage was carried out. 15 g of sodium was put into a stainless steel pipe and heated to 904.8℃. The degree of danger was judged by measuring the pressure and temperature changes during the experiment. The results showed that the leakage of the heat pipe produced yellow flame and explosion sound. 0.081 MPa pressure pulse was detected in the reaction chamber, and the maximum temperature rise of the reaction chamber was 192.1℃. The experimental results include experimental phenomena and leakage process analysis, which provides a basis for the subsequent design and safety assessment of heat pipe cooling reactor.
-
Key words:
- High temperature /
- Sodium heat pipe /
- Experimental research /
- Leakage /
- Combustion
-
表 1 传感器参数
Table 1. Sensor Parameters
测量目标 测量仪器 测量范围 仪器误差 热管及反应室温度 K型热电偶 0~1300℃ 1℃ 反应室压力 压力传感器 0~1 MPa 0.05% 反应室湿度 温湿度传感器 0~100%RH① 4%RH 注:①%RH(Relative Humidity)为相对湿度单位,指空气实际所含水蒸气密度和同温下饱和水蒸气密度的百分比值 表 2 钠主要参与的化学反应方程式
Table 2. Main Chemical Reaction Equations Involved with Sodium
编号 反应名称 化学方程式 1 mol钠放热/kJ 1 钠水反应 2Na+2H2O(g)=2NaOH+H2 183.8 2 钠水反应 2Na+H2O(g)=Na2O+H2 −34.7(吸热) 3 钠氧反应 2Na+O2=Na2O2 255.45 4 钠氧反应 4Na+O2=2Na2O 204.6 5 钠氧水反应 4Na+2H2O(g)+O2=4NaOH 304.7 -
[1] MA Y G, CHEN E H, YU H X, et al. Heat pipe failure accident analysis in megawatt heat pipe cooled reactor[J]. Annals of Nuclear Energy, 2020, 149: 107755. doi: 10.1016/j.anucene.2020.107755 [2] 张鹏. 快堆柱状钠火实验与数值研究[D]. 哈尔滨:哈尔滨工程大学,2013. [3] 彭康玮. 钠冷快堆柱状钠火的实验研究[D]. 哈尔滨:哈尔滨工程大学,2014. [4] 李金珂. 钠冷快堆柱状流钠火燃烧与灭火实验研究[D]. 哈尔滨:哈尔滨工程大学,2017. [5] OHNO S, UCHIYAMA N, KAWATA K, et al. Sodium columnar fire test and code development at PNC[C]//IAEA-IWGFR Technical Committee Meeting on Evaluation of Radioactive Materials Release and Sodium Fires in Fast Reactors. Oarai, Japan: IAEA, 1996: 385-396. [6] 乔彦宇. 钠滴燃烧速率与空间温度分布规律的实验研究[D]. 哈尔滨:哈尔滨工程大学,2018. [7] 王赟. 液态钠-水蒸气表面反应特性的实验研究[Z]. 兰州:中国科学院近代物理研究所,2019:1362-1369. [8] 王超,张智刚,彭康玮,等. 钠滴燃烧仿真模型研究[J]. 原子能科学技术, 2014(7): 1212-1217. 王超, 张智刚, 彭康玮, 等 . 钠滴燃烧仿真模型研究[J]. 原子能科学技术,2014 (7 ):1212 -1217 .[9] WANG C, ZHANG Z G, PENG K W, et al. Simulation research on combustion of liquid sodium droplet[C]//Proceedings of the 2013 21st International Conference on Nuclear Engineering. Chengdu: ASME, 2013. [10] ZHANG Z G, PENG K W, HUO Y, et al. Experimental study on combustion characteristics of sodium fire in a columnar flow[J]. Journal of Nuclear Science and Technology, 2014, 51(2): 166-174. doi: 10.1080/00223131.2014.854711 [11] YHUO Y, ZHANG Z G, ZOU G W. Experimental study on the thermal flow characteristics of a columnar sodium fire affected by a small amount of fire extinguishing powder in a cylindrical confined space[J]. Applied Thermal Engineering, 2020, 170: 114983. doi: 10.1016/j.applthermaleng.2020.114983 [12] 张智刚,孙树斌,刘翀翀,等. 钠滴氧化燃烧特性的实验研究[J]. 原子能科学技术,2015,49(4):667-673. doi: 10.7538/yzk.2015.49.04.0667 [13] 孙树斌. 钠滴氧化燃烧特性的实验研究[D]. 黑龙江:哈尔滨工程大学, 2015. [14] 杜海鸥,王荣东,胡文军. 钠喷射火灾实验研究[J]. 核科学与工程,2011,31(1):41-47. [15] 周卓栋. 受限空间中的钠火仿真研究[D]. 哈尔滨:哈尔滨工程大学,2019.