Numerical Study of the Influence of Rolling Motion on the Spacer Effect of Low Flow Convective Heat Transfer
-
摘要: 针对摇摆条件下低流量对流传热格架效应开展了数值研究。基于实验数据对摇摆模型进行了验证,确立了基于SST k-ω湍流模型的计算流体动力学(CFD)方法。结果表明:①对周向平均时均传热,摇摆会增强低流量工况格架下游传热。但在混合对流恶化恢复区和自然对流区,格架效应仍存在阻尼振荡衰减现象,且振荡幅度减小;②对局部时均传热,热点始终位于垂直摇摆轴方向,摇摆弱化该方向传热,且该方向格架导致的传热弱化现象被进一步增强;③对热点位置瞬时传热,计算工况中瞬时传热系数的最大弱化程度较充分发展稳态可达40%,安全分析中需重点关注。Abstract: A numerical study was carried out on the spacer effect of low flow convective heat transfer under rolling motion. The rolling model was verified based on the experimental data, then a model-based computational fluid dynamics (CFD) method was established. The results show that for the circumferential mean time-averaged heat transfer, the heat transfer downstream of the spacer is enhanced under low flow conditions. However, in the mixed convection deterioration recovery area and natural convection area, the spacer effect still has damping oscillation attenuation, and the oscillation amplitude decreases. For local time-averaged heat transfer, the hot spot always lies in the direction of vertical rolling axis, and the heat transfer is weakened in that direction under rolling motion, and the heat transfer weakening caused by the spacer in that direction is further enhanced. For the instantaneous heat transfer at the hot spot, the maximum weakening degree of the instantaneous heat transfer coefficient can reach 40% of the fullt developed steady state, which needs to be paid attention to in safety analysis.
-
Key words:
- Rolling motion /
- Spacer effect /
- Exponential attenuation /
- Damping oscillation /
- Heat transfer weakening
-
表 1 几何参数与边界条件设置
Table 1. Geometric Parameter and Boundary Conditions
参数 定义 圆形通道内径(D)/mm 11.9 圆形通道长度(L)/m 3(约252D) 运行压力(p)/MPa 15.5 工作介质 单相水 工质物性参数 NIST Real Gas Model 重力加速度/(m·s−2) −9.81 入口边界条件 质量流入口 出口边界条件 压力出口 壁面边界条件 无滑移、等热流密度 质量流密度/(kg·m−2·s−1) 50~600 热流密度(q)/(kW·m−2) 20~140 入口温度/K 400~500 雷诺数(Re) 4809~32078 -
[1] 李林蔚,朱博,刘秀. 核能在我国清洁低碳能源系统中的战略定位研究[J]. 产业与科技论坛,2022, 21(15): 12-15. doi: 10.3969/j.issn.1673-5641.2022.15.004 [2] 黄振,高璞珍,谭思超,等. 摇摆对传热影响的机理分析[J]. 核动力工程,2010, 31(3): 50-54. [3] STEINER A. On the reverse transition of a turbulent flow under the action of buoyancy forces[J]. Journal of Fluid Mechanics, 1971, 47(3): 503-512. doi: 10.1017/S0022112071001198 [4] JACKSON J D, COTTON M A, AXCELL B P. Studies of mixed convection in vertical tubes[J]. International Journal of Heat and Fluid Flow, 1989, 10(1): 2-15. doi: 10.1016/0142-727X(89)90049-0 [5] CARR A D, CONNOR M A, BUHR H O. Velocity, temperature, and turbulence measurements in air for pipe flow with combined free and forced convection[J]. Journal of Heat Transfer, 1973, 95(4): 445-452. doi: 10.1115/1.3450087 [6] PARLATAN Y, TODREAS N E, DRISCOLL M J. Buoyancy and property variation effects in turbulent mixed convection of water in vertical tubes[J]. Journal of Heat Transfer, 1996, 118(2): 381-387. doi: 10.1115/1.2825855 [7] KESHMIRI A, COTTON M A, ADDAD Y, et al. Turbulence models and large eddy simulations applied to ascending mixed convection flows[J]. Flow, Turbulence and Combustion, 2012, 89(3): 407-434. doi: 10.1007/s10494-012-9401-4 [8] WATZINGER A, JOHNSON D G. Wärmeübertragung von Wasser an Rohrwand bei senkrechter Strömung im Übergangsgebiet zwischen laminarer und turbulenter Strömung[J]. Forschung auf dem Gebiet des Ingenieurwesens A, 1939, 10(4): 182-196. [9] LI J L, XIAO Y, GU H Y, et al. Development of a correlation for mixed convection heat transfer in rod bundles[J]. Annals of Nuclear Energy, 2021, 155: 108151. doi: 10.1016/j.anucene.2021.108151 [10] LIU D, GU H Y. Mixed convection heat transfer in a 5×5 rod bundles[J]. International Journal of Heat and Mass Transfer, 2017, 113: 914-921. doi: 10.1016/j.ijheatmasstransfer.2017.05.113 [11] 谭思超,庞凤阁,高璞珍. 摇摆对自然循环传热特性影响的实验研究[J]. 核动力工程,2006, 27(5): 33-36,69. doi: 10.3969/j.issn.0258-0926.2006.05.007 [12] DING G Q, LI N, LIU B, et al. Numerical study of mixed and free convection heat transfer under ocean conditions[J]. International Journal of Heat and Mass Transfer, 2023, 203: 123811. doi: 10.1016/j.ijheatmasstransfer.2022.123811 [13] YAO S C, HOCHREITER L E, LEECH W J. Heat-transfer augmentation in rod bundles near grid spacers[J]. Journal of Heat Transfer, 1982, 104(1): 76-81. doi: 10.1115/1.3245071 [14] TANASE A, GROENEVELD D C. An experimental investigation on the effects of flow obstacles on single phase heat transfer[J]. Nuclear Engineering and Design, 2015, 288: 195-207. doi: 10.1016/j.nucengdes.2015.04.004 [15] 刘达. 棒束通道内低流量流动与传热行为研究[D]. 上海: 上海交通大学, 2018. [16] XIAO Y, LI J L, DING G Q, et al. Numerical study of spacer-induced heat transfer impairment in mixed and free convection heat transfer of water upward flow[J]. International Communications in Heat and Mass Transfer, 2022, 137: 106294. doi: 10.1016/j.icheatmasstransfer.2022.106294 [17] 鄢炳火,顾汉洋,于雷. 海洋条件对棒束间湍流流动传热的影响[J]. 核动力工程,2011, 32(5): 89-95. [18] ZHANG J H, YAN C Q, GAO P Z. Characteristics of pressure drop and correlation of friction factors for single-phase flow in rolling horizontal pipe[J]. Journal of Hydrodynamics, 2009, 21(5): 614-621. doi: 10.1016/S1001-6058(08)60192-4