[1] |
郝文涛,张亚军,杨星团,等. 小型一体化全功率自然循环压水堆NHR200-Ⅱ技术特点及热力市场应用分析[J]. 清华大学学报:自然科学版,2021, 61(4): 322-328.
|
[2] |
张作义, 张亚军, 贾海军. 低温核供热堆关键技术[M]. 上海: 上海交通大学出版社, 2023: 421.
|
[3] |
苏光辉,张金玲,郭玉君,等. 海洋条件对船用核动力堆余热排出系统特性的影响[J]. 原子能科学技术,1996, 30(6): 487-491.
|
[4] |
ZHANG Y P, QIU S Z, SU G H, et al. Design and transient analyses of emergency passive residual heat removal system of CPR1000[J]. Nuclear Engineering and Design, 2012, 242: 247-256. doi: 10.1016/j.nucengdes.2011.09.036
|
[5] |
WU Y W, SU G H, QIU S Z, et al. Development of a thermal–hydraulic analysis software for a passive residual heat removal system[J]. Annals of Nuclear Energy, 2012, 48: 25-39. doi: 10.1016/j.anucene.2012.05.012
|
[6] |
WANG M J, MANERA A, PETROV V, et al. Passive decay heat removal system design for the integral inherent safety light water reactor (I2S-LWR)[J]. Annals of Nuclear Energy, 2020, 145: 106987. doi: 10.1016/j.anucene.2019.106987
|
[7] |
CHATO J C. Natural convection flows in parallel-channel systems[J]. Journal of Heat Transfer, 1963, 85(4): 339-345. doi: 10.1115/1.3686122
|
[8] |
ZVIRIN Y. The onset of flows and instabilities in a thermosyphon with parallel loops[J]. Nuclear Engineering and Design, 1986, 92(2): 217-226. doi: 10.1016/0029-5493(86)90248-7
|
[9] |
TAKEDA T, KAWAMURA H, SEKI M. Natural circulation in parallel vertical channels with different heat inputs[J]. Nuclear Engineering and Design, 1987, 104(2): 133-143. doi: 10.1016/0029-5493(87)90294-9
|
[10] |
GARTIA M R, PILKHWAL D S, VIJAYAN P K, et al. Analysis of metastable regimes in a parallel channel single phase natural circulation system with RELAP5/MOD3.2[J]. International Journal of Thermal Sciences, 2007, 46(10): 1064-1074. doi: 10.1016/j.ijthermalsci.2006.11.016
|
[11] |
GARTIA M R, PILKHWAL D S, VIJAYAN P K, et al. Metastable regimes: a parametric study in reference to single-phase parallel channel natural circulation systems[C]//14th International Conference on Nuclear Engineering. Miami, Florida, USA: ASME, 2006: 63-74.
|
[12] |
SANDERS J. Stability of single-phase natural circulation with inverted U-tube steam generators[J]. Journal of Heat Transfer, 1988, 110(3): 735-742. doi: 10.1115/1.3250553
|
[13] |
JEONG J J, HWANG M, LEE Y J, et al. Non-uniform flow distribution in the steam generator U-tubes of a pressurized water reactor plant during single- and two-phase natural circulations[J]. Nuclear Engineering and Design, 2004, 231(3): 303-314. doi: 10.1016/j.nucengdes.2004.02.002
|
[14] |
杨瑞昌,刘京宫,刘若雷,等. 自然循环蒸汽发生器倒U型管内倒流特性研究[J]. 工程热物理学报,2008, 29(5): 807-810.
|
[15] |
章德,陈文振,王少明. 管长对UTSG倒流管空间分布的影响分析[J]. 核动力工程,2012, 33(3): 33-37.
|
[16] |
HAO J L, CHEN W Z, ZHANG D. Effect of U-tube length on reverse flow in UTSG primary side under natural circulation[J]. Annals of Nuclear Energy, 2013, 56: 66-70. doi: 10.1016/j.anucene.2013.01.014
|
[17] |
YANG B, WANG C, LI X J. Analysis of single phase flow instability in U-tubes of steam generator[J]. Annals of Nuclear Energy, 2017, 109: 180-184. doi: 10.1016/j.anucene.2017.05.028
|
[18] |
XU Z G, JI H R, HONG G, et al. Investigation on the role of mass flow rate in UTSG reverse flow under natural circulation condition[J]. Annals of Nuclear Energy, 2019, 132: 763-772. doi: 10.1016/j.anucene.2019.07.008
|
[19] |
CONG T L, CHEN Y R, LI X J. Three-dimensional methodology to predict reversed flow in primary side of U-tube steam generator[J]. Progress in Nuclear Energy, 2021, 138: 103841. doi: 10.1016/j.pnucene.2021.103841
|
[20] |
LI M R, HAO J L, CHEN W Z, et al. Study on NC in primary loop and reverse flow in SG during SBO combining with SBLOCA[J]. Progress in Nuclear Energy, 2021, 141: 103983. doi: 10.1016/j.pnucene.2021.103983
|
[21] |
华绍曾, 杨学宁. 实用流体阻力手册[M]. 北京: 国防工业出版社, 1985: 660.
|