高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NHR200-Ⅱ低温堆非能动余热排出系统多支路自然循环特性分析

耿一娲 柳雄斌 李笑天 张亚军

耿一娲, 柳雄斌, 李笑天, 张亚军. NHR200-Ⅱ低温堆非能动余热排出系统多支路自然循环特性分析[J]. 核动力工程, 2023, 44(6): 63-70. doi: 10.13832/j.jnpe.2023.06.0063
引用本文: 耿一娲, 柳雄斌, 李笑天, 张亚军. NHR200-Ⅱ低温堆非能动余热排出系统多支路自然循环特性分析[J]. 核动力工程, 2023, 44(6): 63-70. doi: 10.13832/j.jnpe.2023.06.0063
Geng Yiwa, Liu Xiongbin, Li Xiaotian, Zhang Yajun. Analysis of Multi-branch Natural Circulation Characteristics of Passive Residual Heat Removal System in NHR200-Ⅱ Reactor[J]. Nuclear Power Engineering, 2023, 44(6): 63-70. doi: 10.13832/j.jnpe.2023.06.0063
Citation: Geng Yiwa, Liu Xiongbin, Li Xiaotian, Zhang Yajun. Analysis of Multi-branch Natural Circulation Characteristics of Passive Residual Heat Removal System in NHR200-Ⅱ Reactor[J]. Nuclear Power Engineering, 2023, 44(6): 63-70. doi: 10.13832/j.jnpe.2023.06.0063

NHR200-Ⅱ低温堆非能动余热排出系统多支路自然循环特性分析

doi: 10.13832/j.jnpe.2023.06.0063
基金项目: 清华大学自主科研计划项目(20151080379)
详细信息
    作者简介:

    耿一娲(1996—),女,博士研究生,现主要从事反应堆热工水力分析方面的研究,E-mail: eva_geng_1996@163.com

    通讯作者:

    柳雄斌,E-mail: lxb@tsinghua.edu.cn

  • 中图分类号: TL33

Analysis of Multi-branch Natural Circulation Characteristics of Passive Residual Heat Removal System in NHR200-Ⅱ Reactor

  • 摘要: 多支路自然循环系统会出现流量分配不均的现象,为进一步分析系统流动特性,依托低温堆非能动余热排出系统(PRHR)试验台架,建立了多支路并行流道自然循环回路的简化数学模型,利用压降-流量特性图分析了支路倒流现象的机理,并讨论了多种因素对倒流支路数目的影响。分析结果表明:倒流现象降低了PRHR载热功率;增大主换热器(PHE)与空气冷却器(RHE)间的提升高差可以抑制PHE支路倒流现象;存在一临界提升高差,当提升高差小于临界提升高差时,改变PHE或RHE支路的阻力不会改变倒流PHE支路数量,当提升高差大于临界提升高差时,增加PHE支路阻力或减小RHE支路阻力均可以减少倒流支路数量直至完全抑制倒流。

     

  • 图  1  NHR200-Ⅱ PRHR系统示意图

    1—反应堆压力容器;2—堆芯;3—PHE;4—冷环管;5—热环管;6—稳压器;7—RHE;8—空冷塔侧

    Figure  1.  Schematic Diagram of PRHR System of NHR200-Ⅱ

    图  2  低温堆PRHR的PHE支路简图

    s1a—0~1段的长度,其他同理;h1a—1~2段的高度,其他同理;TPHE—PHE温度

    Figure  2.  Schematic Diagram of PHE Branches of PRHR System in Low Temperature Reactor

    图  3  低温堆PRHR系统RHE支路简图

    s1b—0~1段的长度,其他同理;h1b—0~1段的高度,其他同理;TRHE—RHE温度

    Figure  3.  Schematic Diagram of RHE Branch of PRHR System in Low Temperature Reactor

    图  4  低温堆PRHR系统不同倒流支路数目对应的压降-流量曲线

    Figure  4.  Pressure Drop - Flow Rate Curves of PRHR System in Low Temperature Reactor with Different Number of Reverse Flow Branches

    图  5  倒流支路对PRHR系统载热功率的影响

    Figure  5.  Influence of Reverse Flow Branch on Thermal Power of PRHR System

    图  6  RHE支路h的影响

    Figure  6.  Influence of h of RHE Branch

    图  7  RHE支路阻力的影响( $ h < {h_{\text{c}}} $)

    Figure  7.  Influence of Resistance of RHE Branch

    图  8  RHE支路阻力的影响( $ h > {h_{\text{c}}} $)

    Figure  8.  Influence of Resistance of RHE Branch

    图  9  hc随PRHR系统温差的变化曲线

    Figure  9.  Variation of hc with Temperature Difference of PRHR System

    图  10  h对PRHR系统工况点的影响

    Figure  10.  Influence of hof RHE on Operating Point of PRHR System

    图  11  不同PHE支路阻力下的PRHR系统工况点( $ h < {h_{\text{c}}} $)

    Figure  11.  Operating Point of PRHR System under Different Resistance of PHE Branches

    图  12  不同PHE支路阻力下的PRHR系统工况点( $ h > {h_{\text{c}}} $)

    Figure  12.  Operating Point of PRHR System under Different Resistance of PHE Branches

  • [1] 郝文涛,张亚军,杨星团,等. 小型一体化全功率自然循环压水堆NHR200-Ⅱ技术特点及热力市场应用分析[J]. 清华大学学报:自然科学版,2021, 61(4): 322-328.
    [2] 张作义, 张亚军, 贾海军. 低温核供热堆关键技术[M]. 上海: 上海交通大学出版社, 2023: 421.
    [3] 苏光辉,张金玲,郭玉君,等. 海洋条件对船用核动力堆余热排出系统特性的影响[J]. 原子能科学技术,1996, 30(6): 487-491.
    [4] ZHANG Y P, QIU S Z, SU G H, et al. Design and transient analyses of emergency passive residual heat removal system of CPR1000[J]. Nuclear Engineering and Design, 2012, 242: 247-256. doi: 10.1016/j.nucengdes.2011.09.036
    [5] WU Y W, SU G H, QIU S Z, et al. Development of a thermal–hydraulic analysis software for a passive residual heat removal system[J]. Annals of Nuclear Energy, 2012, 48: 25-39. doi: 10.1016/j.anucene.2012.05.012
    [6] WANG M J, MANERA A, PETROV V, et al. Passive decay heat removal system design for the integral inherent safety light water reactor (I2S-LWR)[J]. Annals of Nuclear Energy, 2020, 145: 106987. doi: 10.1016/j.anucene.2019.106987
    [7] CHATO J C. Natural convection flows in parallel-channel systems[J]. Journal of Heat Transfer, 1963, 85(4): 339-345. doi: 10.1115/1.3686122
    [8] ZVIRIN Y. The onset of flows and instabilities in a thermosyphon with parallel loops[J]. Nuclear Engineering and Design, 1986, 92(2): 217-226. doi: 10.1016/0029-5493(86)90248-7
    [9] TAKEDA T, KAWAMURA H, SEKI M. Natural circulation in parallel vertical channels with different heat inputs[J]. Nuclear Engineering and Design, 1987, 104(2): 133-143. doi: 10.1016/0029-5493(87)90294-9
    [10] GARTIA M R, PILKHWAL D S, VIJAYAN P K, et al. Analysis of metastable regimes in a parallel channel single phase natural circulation system with RELAP5/MOD3.2[J]. International Journal of Thermal Sciences, 2007, 46(10): 1064-1074. doi: 10.1016/j.ijthermalsci.2006.11.016
    [11] GARTIA M R, PILKHWAL D S, VIJAYAN P K, et al. Metastable regimes: a parametric study in reference to single-phase parallel channel natural circulation systems[C]//14th International Conference on Nuclear Engineering. Miami, Florida, USA: ASME, 2006: 63-74.
    [12] SANDERS J. Stability of single-phase natural circulation with inverted U-tube steam generators[J]. Journal of Heat Transfer, 1988, 110(3): 735-742. doi: 10.1115/1.3250553
    [13] JEONG J J, HWANG M, LEE Y J, et al. Non-uniform flow distribution in the steam generator U-tubes of a pressurized water reactor plant during single- and two-phase natural circulations[J]. Nuclear Engineering and Design, 2004, 231(3): 303-314. doi: 10.1016/j.nucengdes.2004.02.002
    [14] 杨瑞昌,刘京宫,刘若雷,等. 自然循环蒸汽发生器倒U型管内倒流特性研究[J]. 工程热物理学报,2008, 29(5): 807-810.
    [15] 章德,陈文振,王少明. 管长对UTSG倒流管空间分布的影响分析[J]. 核动力工程,2012, 33(3): 33-37.
    [16] HAO J L, CHEN W Z, ZHANG D. Effect of U-tube length on reverse flow in UTSG primary side under natural circulation[J]. Annals of Nuclear Energy, 2013, 56: 66-70. doi: 10.1016/j.anucene.2013.01.014
    [17] YANG B, WANG C, LI X J. Analysis of single phase flow instability in U-tubes of steam generator[J]. Annals of Nuclear Energy, 2017, 109: 180-184. doi: 10.1016/j.anucene.2017.05.028
    [18] XU Z G, JI H R, HONG G, et al. Investigation on the role of mass flow rate in UTSG reverse flow under natural circulation condition[J]. Annals of Nuclear Energy, 2019, 132: 763-772. doi: 10.1016/j.anucene.2019.07.008
    [19] CONG T L, CHEN Y R, LI X J. Three-dimensional methodology to predict reversed flow in primary side of U-tube steam generator[J]. Progress in Nuclear Energy, 2021, 138: 103841. doi: 10.1016/j.pnucene.2021.103841
    [20] LI M R, HAO J L, CHEN W Z, et al. Study on NC in primary loop and reverse flow in SG during SBO combining with SBLOCA[J]. Progress in Nuclear Energy, 2021, 141: 103983. doi: 10.1016/j.pnucene.2021.103983
    [21] 华绍曾, 杨学宁. 实用流体阻力手册[M]. 北京: 国防工业出版社, 1985: 660.
  • 加载中
图(12)
计量
  • 文章访问数:  1047
  • HTML全文浏览量:  34
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-16
  • 修回日期:  2023-04-12
  • 网络出版日期:  2023-12-11
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回