[1] |
MANZINI G, TORSELLO G, PAROZZI F. Sodium safety-spray and pool fires ECART modeling[C]. Italy: Proceedings of the 15th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics,Pisa, 2013.
|
[2] |
BAE J H, AHN D H, KIM Y C, et al. An experimental study on the characteristics of sodium fires[J]. Nuclear Engineering and Technology, 1994, 26(4): 471-483.
|
[3] |
ZOU W B, ZOU Z Z, TONG L L, et al. Semi-empirical model of droplet size distribution from the maximum entropy principle in sodium spray[J]. Frontiers in Energy Research, 2022, 10: 888738. doi: 10.3389/fenrg.2022.888738
|
[4] |
CLARK A J, DENMAN M R, TAKATA T, et al. SNL/JAEA collaborations on Sodium fire benchmarking: SAND2017-12409[R]. Albuquerque: Sandia National Lab. , 2017.
|
[5] |
ZOU Z Z, TONG L L, CAO X W. Sodium spray fire analysis with combustion space multi-node model for sodium-cooled fast reactor[C]//LIU C M. Proceedings of the 23rd Pacific Basin Nuclear Conference. Singapore: Springer, 2023.
|
[6] |
DU H O, WANG R D, WANG G Z, et al. Sodium spray research in agon atmosphere[J]. Annual Report of China Institute of Atomic Energy, 2014(81): 175.
|
[7] |
TORSELLO G, PAROZZI F, NERICCIO L, et al. Characterization of the liquid Sodium spray generated by a pipework hole[C]. U.S.: Proceedings of the 2012 International Congress on Advances in Nuclear Power Plants. La Grange Park: American Nuclear Society, 2012.
|
[8] |
NAGAI K, HIRABAYASHI M, ONOJIMA T, et al. Sodium leakage and combustion tests-measurement and distribution of droplet size using various spray nozzles: JNC TN9400 99-030[R]. Tokyo: Japan Nuclear Cycle Development Institute, 1999.
|
[9] |
AOTO K, DUFOUR P, HONGYI Y, et al. A summary of sodium-cooled fast reactor development[J]. Progress in Nuclear Energy, 2014, 77: 247-265. doi: 10.1016/j.pnucene.2014.05.008
|
[10] |
OHSHIMA H, KUBO S. Sodium-cooled fast reactor[M]. United Kingdom: Woodhead Publishing, 2016: 97-118.
|
[11] |
CHEN P C, WANG W C, ROBERTS W L, et al. Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system[J]. Fuel, 2013, 103: 850-861. doi: 10.1016/j.fuel.2012.08.013
|
[12] |
LIN S P, LIAN Z W. Absolute and convective instability of a viscous liquid jet surrounded by a viscous gas in a vertical pipe[J]. Physics of Fluids A:Fluid Dynamics, 1993, 5(3): 771-773. doi: 10.1063/1.858662
|
[13] |
REITZ R D. Atomization and other breakup regimes of a liquid jet[D]. USA: Princeton University, 1978: 123-130.
|
[14] |
KITAMURA Y, MISHIMA H, TAKAHASHI T. Stability of jets in liquid-liquid systems[J]. The Canadian Journal of Chemical Engineering, 1982, 60(6): 723-731. doi: 10.1002/cjce.5450600602
|
[15] |
ADELBERG M. Mean drop size resulting from the injection of a liquid jet into a high-speed gas stream[J]. AIAA Journal, 1968, 6(6): 1143-1147. doi: 10.2514/3.4686
|
[16] |
DOMBROWSKI N, JOHNS W R. The aerodynamic instability and disintegration of viscous liquid sheets[J]. Chemical Engineering Science, 1963, 18(3): 203-214. doi: 10.1016/0009-2509(63)85005-8
|
[17] |
WERT K L. A rationally-based correlation of mean fragment size for drop secondary breakup[J]. International Journal of Multiphase Flow, 1995, 21(6): 1063-1071. doi: 10.1016/0301-9322(95)00036-W
|
[18] |
FINK J K, LEIBOWITZ L. Thermodynamic and transport properties of Sodium liquid and vapor: ANL/RE-95/2[R]. Argonne: Argonne National Lab., 1995.
|