高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于不稳定波理论的钠雾化粒径预测研究

徐震 胡培政 佟立丽 曹学武

徐震, 胡培政, 佟立丽, 曹学武. 基于不稳定波理论的钠雾化粒径预测研究[J]. 核动力工程, 2023, 44(6): 80-85. doi: 10.13832/j.jnpe.2023.06.0080
引用本文: 徐震, 胡培政, 佟立丽, 曹学武. 基于不稳定波理论的钠雾化粒径预测研究[J]. 核动力工程, 2023, 44(6): 80-85. doi: 10.13832/j.jnpe.2023.06.0080
Xu Zhen, Hu Peizheng, Tong Lili, Cao Xuewu. Study on Particle Size Prediction of Sodium Atomization Based on Unstable Wave Theory[J]. Nuclear Power Engineering, 2023, 44(6): 80-85. doi: 10.13832/j.jnpe.2023.06.0080
Citation: Xu Zhen, Hu Peizheng, Tong Lili, Cao Xuewu. Study on Particle Size Prediction of Sodium Atomization Based on Unstable Wave Theory[J]. Nuclear Power Engineering, 2023, 44(6): 80-85. doi: 10.13832/j.jnpe.2023.06.0080

基于不稳定波理论的钠雾化粒径预测研究

doi: 10.13832/j.jnpe.2023.06.0080
基金项目: 国家自然科学基金(U1967202);中核集团领创科研项目(20220801PL)
详细信息
    作者简介:

    徐 震(2000—),男,硕士研究生,现主要从事液滴破碎方面的研究,E-mail: xu-zhen@sjtu.edu.cn

    通讯作者:

    佟立丽,E-mail: lltong@sjtu.edu.cn

  • 中图分类号: TL32

Study on Particle Size Prediction of Sodium Atomization Based on Unstable Wave Theory

  • 摘要: 钠雾化粒径是影响钠雾火燃烧强度的关键因素。由于钠的化学性质不稳定,通常采用水模拟钠开展雾化实验,以得到两者粒径关系。本文基于不稳定波理论,建立了由液体物性参数和雾化压差表征的液体雾化粒径相似性模型,并从压差和物性参数2个角度利用多种液体的不同雾化实验验证模型的适用性。搭建了采用喷嘴模拟破口的水雾化实验装置,得到压差范围在0.1~0.5 MPa范围的水雾化液滴平均粒径,预测了300~600℃的钠在不同压差下雾化液滴的平均粒径。通过本文建立的粒径相似性模型和水模拟钠雾化实验装置,可以实现不同压差下钠泄漏雾化粒径的预测,为钠雾火事故研究提供参考。

     

  • 图  1  喷嘴射流破碎过程

    Figure  1.  Broken Process of Nozzle Jet Flow

    图  2  液体表面的不稳定波生长过程

    Figure  2.  Unstable Wave Growth Process on Liquid Surface

    图  3  不同压差下模型的预测情况

    Figure  3.  Prediction of the Model under Different Pressure Differences

    图  4  钠和水雾化粒径转换

    Figure  4.  Sodium and Water Atomization Particle Size Conversion       

    图  5  乙醇和水雾化粒径转换

    Figure  5.  Ethanol and Water Atomization Particle Size Conversion     

    图  6  水模拟钠雾化实验装置示意图

    P—压力测点;T—温度测点

    Figure  6.  Experimental Device for Simulation of Sodium Atomization Using Water

    图  7  激光粒度仪测量原理

    Figure  7.  Principle of Laser Particle Analyzer

    图  8  不同压差下喷嘴出口液滴的可视化图像

    Figure  8.  Visualization of Droplets at the Nozzle Outlet under Different Pressure Differences

    图  9  水雾化液滴平均粒径随压差的变化

    Figure  9.  Variation of Average Particle Size of Water Atomized Droplets with Pressure Difference

    图  10  钠雾化液滴平均粒径的预测结果

    Figure  10.  Predicted Results of Average Particle Size of Sodium Atomized Droplets

  • [1] MANZINI G, TORSELLO G, PAROZZI F. Sodium safety-spray and pool fires ECART modeling[C]. Italy: Proceedings of the 15th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics,Pisa, 2013.
    [2] BAE J H, AHN D H, KIM Y C, et al. An experimental study on the characteristics of sodium fires[J]. Nuclear Engineering and Technology, 1994, 26(4): 471-483.
    [3] ZOU W B, ZOU Z Z, TONG L L, et al. Semi-empirical model of droplet size distribution from the maximum entropy principle in sodium spray[J]. Frontiers in Energy Research, 2022, 10: 888738. doi: 10.3389/fenrg.2022.888738
    [4] CLARK A J, DENMAN M R, TAKATA T, et al. SNL/JAEA collaborations on Sodium fire benchmarking: SAND2017-12409[R]. Albuquerque: Sandia National Lab. , 2017.
    [5] ZOU Z Z, TONG L L, CAO X W. Sodium spray fire analysis with combustion space multi-node model for sodium-cooled fast reactor[C]//LIU C M. Proceedings of the 23rd Pacific Basin Nuclear Conference. Singapore: Springer, 2023.
    [6] DU H O, WANG R D, WANG G Z, et al. Sodium spray research in agon atmosphere[J]. Annual Report of China Institute of Atomic Energy, 2014(81): 175.
    [7] TORSELLO G, PAROZZI F, NERICCIO L, et al. Characterization of the liquid Sodium spray generated by a pipework hole[C]. U.S.: Proceedings of the 2012 International Congress on Advances in Nuclear Power Plants. La Grange Park: American Nuclear Society, 2012.
    [8] NAGAI K, HIRABAYASHI M, ONOJIMA T, et al. Sodium leakage and combustion tests-measurement and distribution of droplet size using various spray nozzles: JNC TN9400 99-030[R]. Tokyo: Japan Nuclear Cycle Development Institute, 1999.
    [9] AOTO K, DUFOUR P, HONGYI Y, et al. A summary of sodium-cooled fast reactor development[J]. Progress in Nuclear Energy, 2014, 77: 247-265. doi: 10.1016/j.pnucene.2014.05.008
    [10] OHSHIMA H, KUBO S. Sodium-cooled fast reactor[M]. United Kingdom: Woodhead Publishing, 2016: 97-118.
    [11] CHEN P C, WANG W C, ROBERTS W L, et al. Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system[J]. Fuel, 2013, 103: 850-861. doi: 10.1016/j.fuel.2012.08.013
    [12] LIN S P, LIAN Z W. Absolute and convective instability of a viscous liquid jet surrounded by a viscous gas in a vertical pipe[J]. Physics of Fluids A:Fluid Dynamics, 1993, 5(3): 771-773. doi: 10.1063/1.858662
    [13] REITZ R D. Atomization and other breakup regimes of a liquid jet[D]. USA: Princeton University, 1978: 123-130.
    [14] KITAMURA Y, MISHIMA H, TAKAHASHI T. Stability of jets in liquid-liquid systems[J]. The Canadian Journal of Chemical Engineering, 1982, 60(6): 723-731. doi: 10.1002/cjce.5450600602
    [15] ADELBERG M. Mean drop size resulting from the injection of a liquid jet into a high-speed gas stream[J]. AIAA Journal, 1968, 6(6): 1143-1147. doi: 10.2514/3.4686
    [16] DOMBROWSKI N, JOHNS W R. The aerodynamic instability and disintegration of viscous liquid sheets[J]. Chemical Engineering Science, 1963, 18(3): 203-214. doi: 10.1016/0009-2509(63)85005-8
    [17] WERT K L. A rationally-based correlation of mean fragment size for drop secondary breakup[J]. International Journal of Multiphase Flow, 1995, 21(6): 1063-1071. doi: 10.1016/0301-9322(95)00036-W
    [18] FINK J K, LEIBOWITZ L. Thermodynamic and transport properties of Sodium liquid and vapor: ANL/RE-95/2[R]. Argonne: Argonne National Lab., 1995.
  • 加载中
图(10)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  63
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-12
  • 修回日期:  2023-05-11
  • 网络出版日期:  2023-12-11
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回