高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2×2棒束通道内流动沸腾空泡份额分布实验研究

刘浩 张卢腾 周文雄 朱隆祥 万灵峰 张宏 马在勇 孙皖 潘良明 邓杰文

刘浩, 张卢腾, 周文雄, 朱隆祥, 万灵峰, 张宏, 马在勇, 孙皖, 潘良明, 邓杰文. 2×2棒束通道内流动沸腾空泡份额分布实验研究[J]. 核动力工程, 2023, 44(6): 104-110. doi: 10.13832/j.jnpe.2023.06.0104
引用本文: 刘浩, 张卢腾, 周文雄, 朱隆祥, 万灵峰, 张宏, 马在勇, 孙皖, 潘良明, 邓杰文. 2×2棒束通道内流动沸腾空泡份额分布实验研究[J]. 核动力工程, 2023, 44(6): 104-110. doi: 10.13832/j.jnpe.2023.06.0104
Liu Hao, Zhang Luteng, Zhou Wenxiong, Zhu Longxiang, Wan Lingfeng, Zhang Hong, Ma Zaiyong, Sun Wan, Pan Liangming, Deng Jiewen. Experimental Investigation on Void Fraction Distribution of Boiling Flow in 2×2 Rod Bundle Channel[J]. Nuclear Power Engineering, 2023, 44(6): 104-110. doi: 10.13832/j.jnpe.2023.06.0104
Citation: Liu Hao, Zhang Luteng, Zhou Wenxiong, Zhu Longxiang, Wan Lingfeng, Zhang Hong, Ma Zaiyong, Sun Wan, Pan Liangming, Deng Jiewen. Experimental Investigation on Void Fraction Distribution of Boiling Flow in 2×2 Rod Bundle Channel[J]. Nuclear Power Engineering, 2023, 44(6): 104-110. doi: 10.13832/j.jnpe.2023.06.0104

2×2棒束通道内流动沸腾空泡份额分布实验研究

doi: 10.13832/j.jnpe.2023.06.0104
基金项目: 国家自然科学基金( U21B2059, 12205031)
详细信息
    作者简介:

    刘 浩(1996—),男,硕士研究生,现主要从事核反应堆热工水力分析,E-mail: haoliu_hl@cqu.edu.cn

    通讯作者:

    张卢腾,E-mail: ltzhang@cqu.edu.cn

  • 中图分类号: TL334

Experimental Investigation on Void Fraction Distribution of Boiling Flow in 2×2 Rod Bundle Channel

  • 摘要: 电导探针方法是一种获取两相界面参数的重要手段。通过单探头电导探针测量并分析了2×2棒束通道内流动沸腾空泡份额的径向分布,结果表明,在当前实验工况下,从汽泡信号的波动特性来看,通道中心处的汽泡信号主体波动幅度较小,棒间隙处的汽泡信号主体波动幅度较大;空泡份额径向分布均呈现出中心峰的分布特性,中心峰呈现出下凹的现象,这是由于中心处的汽泡相对于壁面处的汽泡吸收的热量更小而发生冷凝。

     

  • 图  1  实验回路示意图

    Figure  1.  Schematic of Experiment System

    图  2  实验本体示意图

    Figure  2.  Rod Bundle Test Section

    图  3  棒束通道探针测点布置示意图

    1~8—第1个~第8个测点;1#、2#、3#和4#—加热棒编号

    Figure  3.  Schematic Diagram of Probe Measuring Locations in Rod Bundle Channel

    图  4  单探头电导探针示意图

    Figure  4.  One-Sensor Conductivity Probe

    图  5  工况2测点1和测点4的汽泡信号

    Figure  5.  Bubble Signal at Measuring Point 1 and Measuring Point 4 under Condition 2

    图  6  工况1汽泡径向分布特性

    Figure  6.  Bubble Radial Distribution Characteristics under Condition 1

    图  7  工况2汽泡径向分布特性

    Figure  7.  Bubble Radial Distribution Characteristics under Condition 2

    图  8  工况3汽泡径向分布特性

    Figure  8.  Bubble Radial Distribution Characteristics under Condition 3

    图  9  空泡份额实验值与各滑速比模型计算值的对比

    Figure  9.  Comparison between Experimental Value of Void Fraction and Calculated Value of Each Slip Ratio Model

    表  1  棒束通道实验工况

    Table  1.   Experimental Conditions of Rod Bundle Channel

    工况
    序号
    压力/
    MPa
    质量流速/
    (kg·m−2·s−1)
    入口过冷度/
    K
    热流密度/
    (kW·m−2)
    1 0.33 824.40 27.10 590
    2 0.33 825.86 27.80 605
    3 0.33 822.93 21.90 590
    下载: 导出CSV

    表  2  原始汽泡信号主体电压振幅和单个阶跃信号的时间跨度       

    Table  2.   Time Span of Original Bubble Signal Main Body Amplitude and Single Step Signal

    工况序号 测点1 测点4
    电压振幅/V 时间跨度/ms 电压振幅/V 时间跨度/ms
    1 0~0.5 1.2~3.0 0 0
    2 0~0.5 1.5~3.0 0~1 3.0~8.0
    3 0~0.5 1.0~3.0 0~1.5 5.0~8.0
    下载: 导出CSV

    表  3  滑速比模型

    Table  3.   Slip Ratio Model

    学者 表达式
    Maurer[20] $\alpha = \dfrac{1}{{1 + 0.8{{\left( {\dfrac{{1 - x}}{x}} \right)}^{0.6819 + 0.01217p}}{{\left( {\dfrac{{{\rho _{\text{g}}}}}{{{\rho _{\text{f}}}}}} \right)}^{0.6}}}}$
    Fauske[21] $\alpha = \dfrac{1}{{1 + \dfrac{{1 - x}}{x}{{\left( {\dfrac{{{\rho _{\text{g}}}}}{{{\rho _{\text{f}}}}}} \right)}^{1/2}}}}$
    Zivi[22] $\alpha = \dfrac{1}{{1 + \dfrac{{1 - x}}{x}{{\left( {\dfrac{{{\rho _{\text{g}}}}}{{{\rho _{\text{f}}}}}} \right)}^{2/3}}}}$
    Turner-
    Wallis[23]
    $ \alpha = \dfrac{1}{{1 + {{\left[ {{{\left( {\dfrac{{{\mu _{\text{f}}}}}{{{\mu _{\text{g}}}}}} \right)}^{0.1}}{{\left( {\dfrac{{{\rho _{\text{g}}}}}{{{\rho _{\text{f}}}}}} \right)}^{0.5}}{{\left( {\dfrac{{1 - x}}{x}} \right)}^{0.9}}} \right]}^{0.8}}}} $
    Baroczy[24] $\alpha = {\left[ {1 + {{\left( {\dfrac{{1 - x}}{x}} \right)}^{0.72}}{{\left( {\dfrac{{{\rho _{\text{g}}}}}{{{\rho _{\text{f}}}}}} \right)}^{0.65}}{{\left( {\dfrac{{{\mu _{\text{f}}}}}{{{\mu _{\text{g}}}}}} \right)}^{0.13}}} \right]^{ - 1}}$
    Smith[25] $\alpha = {\left\{ {1 + 0.4\dfrac{{{\rho _{\text{g}}}}}{{{\rho _{\text{f}}}}}\left( {\dfrac{1}{x} - 1} \right) + 0.6\dfrac{{{\rho _{\text{g}}}}}{{{\rho _{\text{f}}}}}\left( {\dfrac{1}{x} - 1} \right){{\left[ {\dfrac{{{\rho _{\text{f}}}/{\rho _{\text{g}}} + 0.4(1/x - 1)}}{{1 + 0.4(1/x - 1)}}} \right]}^{1/2}}} \right\}^{ - 1}}$
    Wallis[26] $ \alpha = {\left\{ {1 + {{\left[ {{{\left( {\dfrac{{{\mu _{\text{f}}}}}{{{\mu _{\text{g}}}}}} \right)}^{0.1}}{{\left( {\dfrac{{{\rho _{\text{g}}}}}{{{\rho _{\text{f}}}}}} \right)}^{0.5}}{{\left( {\dfrac{{1 - x}}{x}} \right)}^{0.9}}} \right]}^{0.8}}} \right\}^{ - 0.38}} $
    Chisholm[27] $\alpha = \dfrac{1}{{1 + \dfrac{{1 - x}}{x}\dfrac{{{\rho _{\text{g}}}}}{{{\rho _{\text{f}}}}}\sqrt {1 - x\left( {1 - \dfrac{{{\rho _{\text{f}}}}}{{{\rho _{\text{g}}}}}} \right)} }}$
       α—空泡份额;p—压力,MPa; $ {\rho _{\text{g}}} $—气相密度,kg/m3; $ {\rho _{\text{f}}} $—液相密度,kg/m3; $ {\mu _{\text{g}}} $—气相粘度,Pa∙s; $ {\mu _{\text{f}}} $—液相粘度,Pa∙s
    下载: 导出CSV

    表  4  汽泡尺寸计算结果

    Table  4.   Calculation Results of Bubble Size

    工况序号 测点1 测点4
    时间跨
    度/ms
    基于Fauske模型的
    汽泡尺寸/mm
    时间跨
    度/ms
    基于Fauske模型的
    汽泡尺寸/mm
    1 1.2~3.0 23.7~59.2 0 0
    2 1.5~3.0 29.6~59.2 3.0~8.0 59.2~157.9
    3 1.0~3.0 19.7~59.2 5.0~8.0 98.7~157.9
    下载: 导出CSV
  • [1] ISHII M, HIBIKI T. Thermo-fluid dynamics of two-phase flow[M]. 2nd ed. New York: Springer, 2011: 518.
    [2] OZAR B, BROOKS C S, HIBIKI T, et al. Interfacial area transport of vertical upward steam–water two-phase flow in an annular channel at elevated pressures[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 504-518. doi: 10.1016/j.ijheatmasstransfer.2012.10.059
    [3] PRASSER H M, KREPPER E, LUCAS D. Evolution of the two-phase flow in a vertical tube—decomposition of gas fraction profiles according to bubble size classes using wire-mesh sensors[J]. International Journal of Thermal Sciences, 2002, 41(1): 17-28. doi: 10.1016/S1290-0729(01)01300-X
    [4] TOMIYAMA A, TAMAI H, ZUN I, et al. Transverse migration of single bubbles in simple shear flows[J]. Chemical Engineering Science, 2002, 57(11): 1849-1858. doi: 10.1016/S0009-2509(02)00085-4
    [5] LUCAS D, KREPPER E, PRASSER H M. Development of co-current air–water flow in a vertical pipe[J]. International Journal of Multiphase Flow, 2005, 31(12): 1304-1328. doi: 10.1016/j.ijmultiphaseflow.2005.07.004
    [6] 徐济鋆. 沸腾传热和气液两相流[M]. 第二版. 北京: 原子能出版社, 2001: 388.
    [7] AGOSTINI G, ERA A, PREMOLI A. Density measurements of steam- water mixtures flowing in a tubular channel under adiabatic and heated conditions[J]. Energia Nucleare, 1971, 18(5): 295-310.
    [8] ANKLAM T M, MILLER R F. Void fraction under high pressure, low flow conditions in rod bundle geometry[J]. Nuclear Engineering and Design, 1983, 75(1): 99-108. doi: 10.1016/0029-5493(83)90083-3
    [9] ANODA Y, KUKITA Y, TASAKA K. Void fraction distribution on rod bundle under high pressure conditions[C]// American Society of Mechanical Engineers. Proceedings of the ASME Winter Annual Meeting. US: American Society of Mechanical Engineers.1990: 283-289.
    [10] YUN B J, SIM S K, HWANG S H, et al. Local characteristics of two-phase flow parameters in an annulus boiling channel[J]. KSME International Journal, 1997, 11(4): 443-456. doi: 10.1007/BF02945083
    [11] YUN B J, PARK G C, JULIA J E, et al. Flow structure of subcooled boiling water flow in a subchannel of 3×3 rod bundles[J]. Journal of Nuclear Science and Technology, 2008, 45(5): 402-422. doi: 10.1080/18811248.2008.9711450
    [12] YANG X, SCHLEGEL J P, LIU Y, et al. Measurement and modeling of two-phase flow parameters in scaled 8×8 BWR rod bundle[J]. International Journal of Heat and Fluid Flow, 2012, 34: 85-97. doi: 10.1016/j.ijheatfluidflow.2012.02.001
    [13] YANG X, SCHLEGEL J P, LIU Y, et al. Experimental study of interfacial area transport in air–water two phase flow in a scaled 8×8 BWR rod bundle[J]. International Journal of Multiphase Flow, 2013, 50: 16-32. doi: 10.1016/j.ijmultiphaseflow.2012.10.006
    [14] REN Q Y, PAN L M, ZHOU W X, et al. Phase distribution characteristics of bubbly flow in 5 × 5 vertical rod bundles with mixing vane spacer grids[J]. Experimental Thermal and Fluid Science, 2018, 96: 451-459. doi: 10.1016/j.expthermflusci.2018.04.002
    [15] SHEN X Z, MIWA S, XIAO Y G, et al. Local measurements of upward air-water two-phase flows in a vertical 6×6 rod bundle[J]. Experimental and Computational Multiphase Flow, 2019, 1(3): 186-200. doi: 10.1007/s42757-019-0031-0
    [16] BOTTINI J L, ZHU L X, OOI Z J, et al. Experimental study of boiling flow in a vertical heated annulus with local two-phase measurements and visualization[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119712. doi: 10.1016/j.ijheatmasstransfer.2020.119712
    [17] OOI Z J, BROOKS C S. Beyond time-averaged measurement of bubble parameters in steam-water flows with conductivity probes[J]. International Journal of Multiphase Flow, 2021, 138: 103594. doi: 10.1016/j.ijmultiphaseflow.2021.103594
    [18] HIBIKI T, HOGSETT S, ISHII M. Local measurement of interfacial area, interfacial velocity and liquid turbulence in two-phase flow[J]. Nuclear Engineering and Design, 1998, 184(2-3): 287-304. doi: 10.1016/S0029-5493(98)00203-9
    [19] SAHA P, ZUBER N. Point of net vapor generation and vapor void fraction in subcooled boiling[C]//Proceedings of the International Heat Transfer Conference 5. Tokyo: IHTC, 1974: 175-179.
    [20] MAURER G. A method of predicting steady-state boiling vapor fractions in reactor coolant channels[J]. Bettis Technical Review, 1960, WAPD-BT-19: 59-70.
    [21] FAUSKE H. Critical two-phase, steam-water flows[C]//Proceedings of the the 1961 Heat Transfer and Fluid Mechanics Institute. Stanford: Stanford University Press, 1961: 79-89.
    [22] ZIVI S M. Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production[J]. Journal of Heat Transfer, 1964, 86(2): 247-251. doi: 10.1115/1.3687113
    [23] TURNER J M, WALLIS G B. The separate-cylinders model of two-phase flow: NSA-19-040737[R]. Hanover: Thayer School of Engineering, Dartmouth College, 1965.
    [24] BAROCZY C J. A systematic correlation for two-phase pressure drop[J]. Chemical Engineering Progress Symposium Series, 1966, 64: 232-249.
    [25] SMITH S L. Void fractions in two-phase flow: a correlation based upon an equal velocity head model[J]. Proceedings of the Institution of Mechanical Engineers, 1969, 184(1): 647-664. doi: 10.1243/PIME_PROC_1969_184_051_02
    [26] WALLIS G B. One-dimensional two-phase flow[M]. New York: McGraw-Hill, 1969: 408.
    [27] CHISHOLM D. Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels[J]. International Journal of Heat and Mass Transfer, 1973, 16(2): 347-358. doi: 10.1016/0017-9310(73)90063-X
    [28] ISHII M. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes: ANL-77-47[R]. Argonne: Argonne National Laboratory, 1978.
    [29] ISHII M, ZUBER N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J]. AIChE Journal, 1979, 25(5): 843-855. doi: 10.1002/aic.690250513
    [30] KIM S, FU X Y, WANG X, et al. Development of the miniaturized four-sensor conductivity probe and the signal processing scheme[J]. International Journal of Heat and Mass Transfer, 2000, 43(22): 4101-4118. doi: 10.1016/S0017-9310(00)00046-6
    [31] REN Q Y, PAN L M, PU Z P, et al. Two-group phase distribution characteristics for air-water flow in 5×5 vertical rod bundle channel with mixing vane spacer grids[J]. International Journal of Heat and Mass Transfer, 2021, 176: 121444. doi: 10.1016/j.ijheatmasstransfer.2021.121444
    [32] ZHANG H W, XIAO Y, GU H Y. Experimental investigation of two-phase flow evolution in a tight lattice bundle using wire-mesh sensor[J]. International Journal of Heat and Mass Transfer, 2021, 171: 121079. doi: 10.1016/j.ijheatmasstransfer.2021.121079
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  30
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-23
  • 修回日期:  2023-05-06
  • 网络出版日期:  2023-12-11
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回