Investigation on Characteristics of Resistance and Flow Distribution of 5×5 Annular Fuel Rod Bundle Channel under Pulsating Flow Condition
-
摘要: 环形燃料棒束通道相较于传统实心棒束通道,具有增强冷却能力、提高功率密度等优点,其特殊几何形状使阻力特性与流量分配特性密切相关。在脉动流条件下,环形燃料内外流道流量呈周期性波动,影响冷却剂换热效率,威胁核反应堆安全。本文基于计算流体动力学(CFD)方法对5×5环形燃料棒束通道建立模型,在稳态与脉动流条件下开展模拟计算,模拟结果与粒子图像测速(PIV)实验测量速度场、摩擦阻力系数经验公式相比具有一致性。计算分析了内外流道摩擦阻力系数随雷诺数的变化规律,稳态条件下环形燃料的流量分配比(内流道流量比外流道流量)与压降比呈负相关;脉动流条件下,周期平均流量分配比与脉动频率呈负相关,与脉动振幅呈正相关。
-
关键词:
- 环形燃料 /
- 脉动流 /
- 阻力特性 /
- 流量分配特性 /
- 计算流体动力学(CFD)
Abstract: Compared to the traditional solid rod bundle channel, the annular fuel bundle channel has the advantages of enhancing cooling capacity and improving power density, and its special geometry makes the resistance characteristics closely related to the flow distribution characteristics. Under the pulsating flow condition, the flow rate in the inner and outer channels of annular fuel fluctuates periodically, which affects the heat exchange efficiency of coolant and threatens the safety of nuclear reactor. In this paper, a model of 5×5 annular fuel rod bundle channel is established based on computational fluid dynamics (CFD) method, and simulation calculation is carried out under steady-state and pulsating flow conditions. The simulation is benchmarked with the experimental velocity field measured with PIV and the friction factors predicted by the empirical correlation, and the results show good agreement. The variation characteristics of the friction factors of the inner and outer channels versus the Reynolds number are analyzed. Under the steady-state condition, the flow distribution ratio (inner channel flow versus outer channel flow) of the annular fuel is inversely proportional to the pressure drop ratio. Under the pulsating flow condition, the periodically averaged flow distribution ratio is inversely proportional to the pulsating frequency and proportional to the pulsating amplitude. -
表 1 计算工况设置
Table 1. Calculation Condition Setting
工况 U0/(m·s−1) Ar T/s 稳态 0.7~2.5(间隔0.05) 0 瞬态 1.5 0.15 3 0.15 7 0.15 14 0.15 28 0.30 14 0.45 14 0.60 14 -
[1] BLINKOV V N, BOLTENKO E A, ELKIN I V, et al. Prospects for using annular fuel elements in nuclear power engineering[J]. Thermal Engineering, 2010, 57(3): 213-218. doi: 10.1134/S0040601510030043 [2] SHIN C H, CHUN T H, OH D S, et al. Thermal hydraulic performance assessment of dual-cooled annular nuclear fuel for OPR-1000[J]. Nuclear Engineering and Design, 2012, 243: 291-300. doi: 10.1016/j.nucengdes.2011.12.010 [3] KAZIMI M S, HEJZLAR P, CARPENTER D M, et al. High Performance Fuel Design for Next Generation PWRs: Final Report: PR-082 [R] Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States), 2006. [4] 李兴,王强龙,邱金荣,等. 加/减速流动下棒束通道内速度分布和湍流特性研究[J]. 原子能科学技术,2021, 55(9): 1692-1699. [5] REHME K. Pressure drop performance of rod bundles in hexagonal arrangements[J]. International Journal of Heat and Mass Transfer, 1972, 15(12): 2499-2517. doi: 10.1016/0017-9310(72)90143-3 [6] CHENG S K, TODREAS N E. Hydrodynamic models and correlations for bare and wire-wrapped hexagonal rod bundles-Bundle friction factors, subchannel friction factors and mixing parameters[J]. Nuclear Engineering and Design, 1986, 92(2): 227-251. doi: 10.1016/0029-5493(86)90249-9 [7] HERSHEY D, SONG G. Friction factors and pressure drop for sinusoidal laminar flow of water and blood in rigid tubes[J]. AIChE Journal, 1967, 13(3): 491-496. doi: 10.1002/aic.690130318 [8] SHEMER L, WYGNANSKI I, KIT E. Pulsating flow in a pipe[J]. Journal of Fluid Mechanics, 1985, 153: 313-337. doi: 10.1017/S0022112085001276 [9] HE S, JACKSON J D. A study of turbulence under conditions of transient flow in a pipe[J]. Journal of Fluid Mechanics, 2000, 408: 1-38. doi: 10.1017/S0022112099007016 [10] 李兴,祁沛垚,谭思超,等. 脉动流下棒束通道内相位差及瞬态流场研究[J]. 原子能科学技术,2019, 53(8): 1402-1409. [11] ZHANG Y X, GAO P Z, HE X Q, et al. Numerical analysis of flow resistance characteristics in an inclined rod bundle channel[J]. Progress in Nuclear Energy, 2020, 122: 103247. doi: 10.1016/j.pnucene.2020.103247 [12] 李小畅. 棒束通道单相及两相流动与传热数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2015. [13] 陈畏葓,张虹,朱力,等. CFD方法在棒束定位格架热工水力分析中的应用研究[J]. 核动力工程,2009, 30(S1): 34-38. [14] STANISLAS M, OKAMOTO K, KÄHLER C J, et al. Main results of the second international PIV challenge[J]. Experiments in Fluids, 2005, 39(2): 170-191. doi: 10.1007/s00348-005-0951-2 [15] 沈昊, 于楠, 俞洋, 等. 6×6棒束流场的试验及数值研究[C]//中国核科学技术进展报告(第四卷)——中国核学会2015年学术年会论文集第2册(核能动力分卷(上)). 北京: 中国核学会, 2015. [16] BLASIUS H. Grenzschichten in flüssigkeiten mit kleiner reibung[J]. Zeitschrift für Angewandte Mathematik und Physik, 1908, 56: 1-37.