高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al元素对20Cr25NiNb耐热钢热老化行为的影响研究

舒茗 周钦 李刚 刘肖 孙永铎 赵可 肖军

舒茗, 周钦, 李刚, 刘肖, 孙永铎, 赵可, 肖军. Al元素对20Cr25NiNb耐热钢热老化行为的影响研究[J]. 核动力工程, 2023, 44(6): 140-147. doi: 10.13832/j.jnpe.2023.06.0140
引用本文: 舒茗, 周钦, 李刚, 刘肖, 孙永铎, 赵可, 肖军. Al元素对20Cr25NiNb耐热钢热老化行为的影响研究[J]. 核动力工程, 2023, 44(6): 140-147. doi: 10.13832/j.jnpe.2023.06.0140
Shu Ming, Zhou Qin, Li Gang, Liu Xiao, Sun Yongduo, Zhao Ke, Xiao Jun. Effect of Al Element on Thermal Aging Behavior of 20Cr25NiNb Heat-Resistant Steel[J]. Nuclear Power Engineering, 2023, 44(6): 140-147. doi: 10.13832/j.jnpe.2023.06.0140
Citation: Shu Ming, Zhou Qin, Li Gang, Liu Xiao, Sun Yongduo, Zhao Ke, Xiao Jun. Effect of Al Element on Thermal Aging Behavior of 20Cr25NiNb Heat-Resistant Steel[J]. Nuclear Power Engineering, 2023, 44(6): 140-147. doi: 10.13832/j.jnpe.2023.06.0140

Al元素对20Cr25NiNb耐热钢热老化行为的影响研究

doi: 10.13832/j.jnpe.2023.06.0140
基金项目: 四川省自然科学基金(2022NSFSC1191);中国核动力研究设计院原创基金(YF9722003)
详细信息
    作者简介:

    舒 茗(1990—),男,助理研究员,现主要从事先进反应堆结构材料研究,E-mail:shum09@163.com

  • 中图分类号: TG14;TL424

Effect of Al Element on Thermal Aging Behavior of 20Cr25NiNb Heat-Resistant Steel

  • 摘要: 为深入研究超临界气冷堆包壳材料的高温热老化行为以及Al元素对力学性能退化的影响,本文对添加Al元素和不含Al元素的2种20Cr25NiNb奥氏体耐热钢进行了750℃热老化试验,并开展了相应的微观组织分析和力学性能测试。研究发现,固溶态合金基体为奥氏体相,并含有少量微米级NbC。热老化后合金基体中析出了Laves相和σ相,而含Al钢中还观察到了NiAl相的析出。Al元素对20Cr25NiNb的热老化行为产生了双重影响,一方面,Al元素具有固溶强化效果,同时使得热老化后析出的Laves相尺寸更小、数密度更高,从而提升了高温拉伸强度;另一方面,蠕变裂纹主要沿晶界萌生并扩展,热老化后含Al合金中σ相体积分数更高,粗化更严重,严重降低了蠕变断裂寿命。不含Al合金晶界处析出的细小Laves相能有效阻止σ相生长,提升材料的蠕变性能。因此,本研究为超临界气冷堆包壳材料的成分优化提供了有力的支持。

     

  • 图  1  固溶态2025WMo的基体组织和析出相

    Figure  1.  Matrix and Precipitates of As-solutionized 2025WMo      

    图  2  固溶态和热老化态合金XRD图像

    Figure  2.  XRD Pattern of Solid Solution and Aged Alloys

    图  3  750℃下1000 h热老化后微观组织形貌

    Figure  3.  Microstructure after Thermal Aging at 750℃ for 1000 h      

    图  4  热老化后改进型20Cr25NiNb不锈钢主要析出相能谱分析结果

    Figure  4.  Energy Dispersive Spectroscopy Analysis of Precipitated Phases for Advanced 20Cr25NiNb Stainless Steels after Thermal Aging

    图  5  750℃、3000 h热老化后微观组织形貌

    Figure  5.  Microstructure after Thermal Aging at 750℃ for 3000 h      

    图  6  750℃、3000 h热老化后2025AFA基体中析出相伴生(BSE)

    Figure  6.  Accompanying Precipitation Behavior in Matrix of 2025AFA after Thermal Aging at 750℃ for 3000 h (BSE)

    图  7  750℃下合金工程应力-工程应变曲线图

    Figure  7.  Engineering Stress vs. Engineering Strain Curves of Alloys Tested at 750℃

    图  8  不同状态下2025WMo和2025AFA材料强度对照

    Figure  8.  Comparison of Strength for 2025WMo and 2025AFA Alloys under Different Heat Treatment State

    图  9  750℃蠕变应变-试验时间曲线图

    Figure  9.  Creep Strain versus Test Time Curves of Tested Alloys at 750℃

    图  10  2025AFA试样蠕变后微观组织图像

    Figure  10.  Microstructure of 2025AFA Sample after Creep       

    图  11  750℃、3000 h热老化后2025WMo析出相分布

    Figure  11.  Precipitates Distribution of 2025WMo after Thermal Aging at 750℃ for 3000 h

    图  12  750℃下试验合金热力学稳定相

    Figure  12.  Thermodynamically Stable Phases of Alloys Tested at 750℃

    表  1  试验用合金化学成分

    Table  1.   Chemical Composition of Alloys for Test

    编号 元素质量分数/%
    Ni Cr Nb Si Mn W Mo C Al Fe 其他
    2025WMo 23.50 20.0 0.76 0.5 0.7 2 1.0 0.047 余量
    2025AFA 23.44 19.4 0.83 0.2 0.6 2 1.1 0.057 2.5 余量 B<0.0025
    下载: 导出CSV

    表  2  热老化后合金Laves相和σ相尺寸和体积分数

    Table  2.   Size and Volume Fraction of Laves and σ Phases of the Tested Alloys after Thermal Aging

    样品 2025WMo 2025AFA
    热老化时间/h 1000 3000 1000 3000
    Laves相 平均尺寸d/μm 0.2823 0.4107 0.2315 0.2480
    f /% 1.03 1.82 1.28 1.34
    σ相 平均尺寸d /μm 1.2779 1.2536 1.2251 1.4899
    f /% 1.52 2.92 9.65 17.04
    下载: 导出CSV
  • [1] 黄彦平,王俊峰. 超临界二氧化碳在核反应堆系统中的应用[J]. 核动力工程,2012, 33(3): 21-27.
    [2] 杨文斗. 反应堆材料学[M]. 北京: 中国原子能出版社, 2000: 232.
    [3] DAWSON J W, PHILLIPS M. Gas-cooled nuclear reactor designs, operation and fuel cycle[M]// CROSSLAND I. Nuclear Fuel Cycle Science and Engineering. Cambridge: Woodhead Publishing, 2012: 300-332.
    [4] AL-SHATER A, ENGELBERG D, LYON S, et al. Characterization of the stress corrosion cracking behavior of thermally sensitized 20Cr-25Ni stainless steel in a simulated cooling pond environment[J]. Journal of Nuclear Science and Technology, 2017, 54(7): 742-751. doi: 10.1080/00223131.2017.1309305
    [5] SHU M, ZHOU Q, SHEN Y H, et al. Improved creep resistance of 20Cr25NiNb heat resistant steels through grain boundary intermetallic precipitation strengthening[J]. Journal of Materials Research and Technology, 2023, 25: 3728-3743. doi: 10.1016/j.jmrt.2023.06.213
    [6] JANG M H, MOON J, KANG J Y, et al. Effect of tungsten addition on high-temperature properties and microstructure of alumina-forming austenitic heat-resistant steels[J]. Materials Science and Engineering:A, 2015, 647: 163-169. doi: 10.1016/j.msea.2015.09.018
    [7] JANG M H, KANG J Y, JANG J H, et al. Improved creep strength of alumina-forming austenitic heat-resistant steels through W addition[J]. Materials Science and Engineering:A, 2017, 696: 70-79. doi: 10.1016/j.msea.2017.04.062
    [8] YAMAMOTO Y, BRADY M P, SANTELLA M L, et al. Overview of strategies for high-temperature creep and oxidation resistance of alumina-forming austenitic stainless steels[J]. Metallurgical and Materials Transactions A, 2011, 42(4): 922-931. doi: 10.1007/s11661-010-0295-2
    [9] EVANS H E. Spallation of oxide from stainless steel AGR nuclear fuel cladding: mechanisms and consequences[J]. Materials Science and Technology, 1988, 4(5): 414-420. doi: 10.1179/mst.1988.4.5.414
    [10] LOBB R C. Observations on the microstructure of 20Cr-25Ni-Nb stainless steel after exposure to iodine vapor during creep at 750℃[J]. Oxidation of Metals, 1981, 15(1): 147-167.
    [11] LOBB R C. The effect of iodine vapour on creep rupture properties of nitrided 20% Cr/25% Ni/Nb/1.5 Ti stainless steel[J]. Journal of Nuclear Materials, 1978, 74(2): 212-220. doi: 10.1016/0022-3115(78)90360-4
    [12] BENNETT M J, ROBERTS A C, SPINDLER M W, et al. Interaction between oxidation and mechanical properties of 20Cr–25Ni–Nb stabilised stainless steel[J]. Materials Science and Technology, 1990, 6(1): 56-68. doi: 10.1179/mst.1990.6.1.56
    [13] JIANG Y J, GAO Q Z, ZHANG H L, et al. The effect of isothermal aging on microstructure and mechanical behavior of modified 2.5Al alumina-forming austenitic steel[J]. Materials Science and Engineering:A, 2019, 748: 161-172. doi: 10.1016/j.msea.2019.01.087
    [14] JIANG J D, LIU Z Y, GAO Q Z, et al. The effect of isothermal aging on creep behavior of modified 2.5Al alumina-forming austenitic steel[J]. Materials Science and Engineering:A, 2020, 797: 140219. doi: 10.1016/j.msea.2020.140219
    [15] SHU M, ZHOU Q, XIAO J, et al. Precipitates evolution during isothermal aging and its effect on tensile properties for an AFA alloy containing W and B elements[J]. Journal of Materials Science, 2023, 58(27): 11252-11269. doi: 10.1007/s10853-023-08663-5
    [16] YAMAMOTO Y, SANTELLA M L, BRADY M P, et al. Effect of alloying additions on phase Equilibria and Creep resistance of alumina-forming austenitic stainless steels[J]. Metallurgical and Materials Transactions A, 2009, 40(8): 1868-1880. doi: 10.1007/s11661-009-9886-1
    [17] HU B, TROTTER G, WANG Z W, et al. Effect of boron and carbon addition on microstructure and mechanical properties of the aged gamma-prime strengthened alumina-forming austenitic alloys[J]. Intermetallics, 2017, 90: 36-49. doi: 10.1016/j.intermet.2017.06.011
    [18] ZHAO W X, ZHOU D Q, JIANG S H, et al. Ultrahigh stability and strong precipitation strengthening of nanosized NbC in alumina-forming austenitic stainless steels subjecting to long-term high-temperature exposure[J]. Materials Science and Engineering:A, 2018, 738: 295-307. doi: 10.1016/j.msea.2018.09.081
    [19] BEI H, YAMAMOTO Y, BRADY M P, et al. Aging effects on the mechanical properties of alumina-forming austenitic stainless steels[J]. Materials Science and Engineering:A, 2010, 527(7-8): 2079-2086. doi: 10.1016/j.msea.2009.11.052
    [20] ALOMARI A S. Serrated yielding and creep properties of an advanced austenitic stainless steel (Alloy 709) - application to next generation sodium fast reactors[D]. Raleigh: North Carolina State University, 2019.
    [21] MENG H J, WANG J, WANG L, et al. The precipitation control in aged alumina-forming austenitic stainless steels Fe-15Cr-25Ni-3Al-NbWCu by W addition and its effect on the mechanical properties[J]. Materials Characterization, 2020, 163: 110233. doi: 10.1016/j.matchar.2020.110233
    [22] MA K K, WEN H M, HU T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy[J]. Acta Materialia, 2014, 62: 141-155. doi: 10.1016/j.actamat.2013.09.042
    [23] WEN D H, LI Z, JIANG B B, et al. Effects of Nb/Ti/V/Ta on phase precipitation and oxidation resistance at 1073 K in alumina-forming austenitic stainless steels[J]. Materials Characterization, 2018, 144: 86-98. doi: 10.1016/j.matchar.2018.07.007
    [24] NIKULIN I, KIPELOVA A, KAIBYSHEV R. Effect of high-temperature exposure on the mechanical properties of 18Cr–8Ni–W–Nb–V–N stainless steel[J]. Materials Science and Engineering:A, 2012, 554: 61-66. doi: 10.1016/j.msea.2012.06.011
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  110
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-20
  • 修回日期:  2023-07-31
  • 网络出版日期:  2023-12-11
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回