高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

残余气孔对TRISO颗粒高温堆内热-力学行为影响研究

赵艳丽 刘仕超 李垣明 唐昌兵 路怀玉

赵艳丽, 刘仕超, 李垣明, 唐昌兵, 路怀玉. 残余气孔对TRISO颗粒高温堆内热-力学行为影响研究[J]. 核动力工程, 2023, 44(6): 155-161. doi: 10.13832/j.jnpe.2023.06.0155
引用本文: 赵艳丽, 刘仕超, 李垣明, 唐昌兵, 路怀玉. 残余气孔对TRISO颗粒高温堆内热-力学行为影响研究[J]. 核动力工程, 2023, 44(6): 155-161. doi: 10.13832/j.jnpe.2023.06.0155
Zhao Yanli, Liu Shichao, Li Yuanming, Tang Changbing, Lu Huaiyu. Research on Influence of Residual Pores on Thermal-Mechanical Performance of TRISO Particle in High Temperature Reactor[J]. Nuclear Power Engineering, 2023, 44(6): 155-161. doi: 10.13832/j.jnpe.2023.06.0155
Citation: Zhao Yanli, Liu Shichao, Li Yuanming, Tang Changbing, Lu Huaiyu. Research on Influence of Residual Pores on Thermal-Mechanical Performance of TRISO Particle in High Temperature Reactor[J]. Nuclear Power Engineering, 2023, 44(6): 155-161. doi: 10.13832/j.jnpe.2023.06.0155

残余气孔对TRISO颗粒高温堆内热-力学行为影响研究

doi: 10.13832/j.jnpe.2023.06.0155
基金项目: 国家自然科学基金(12005213);四川省自然科学基金(2022NSFSC1199)
详细信息
    作者简介:

    赵艳丽(1991—),女,工程师,现主要从事燃料、材料设计和研究工作,E- mail:95662724@qq.com

    通讯作者:

    刘仕超,E-mail: hit_lsc@163.com

  • 中图分类号: TL35

Research on Influence of Residual Pores on Thermal-Mechanical Performance of TRISO Particle in High Temperature Reactor

  • 摘要: 为了明确SiC层中可能出现残余气孔对三向同性燃料(TRISO)颗粒堆内性能影响,确定残余气孔的临界尺寸,本文采用多物理场耦合COMSOL软件对含有残余气孔的TRISO颗粒的堆内行为进行数值模拟,以分析TRISO颗粒裂变气体、CO释放量及内压和残余气孔尺寸对TRISO颗粒包覆层应力分布的影响。分析结果表明,在辐照后期,TRISO颗粒的CO释放比例远高于裂变气体原子,颗粒内压可达49.5 MPa。残余气孔的存在使得碳化硅(SiC)层、内致密热解碳(IPyC)层和外致密热解碳(OPyC)层应力迅速增大,尤其是SiC层,当残余气孔尺寸达到9 μm时,SiC层最大应力达600 MPa,远高于其本征强度;当残余气孔尺寸为5 μm时,SiC层的最大应力约为450 MPa,与其本征强度相当。因此,在制备过程中为保证SiC层的结构完整性, SiC层的残余气孔尺寸应小于5 μm。

     

  • 图  1  TRISO颗粒的计算模型及边界条件

    Figure  1.  Calculation Model and Boundary Condition of TRISO Particle

    图  2  不同中子注量下裂变气体释放量和CO气体释放量以及内压变化

    Figure  2.  Changes of Fission Gas Release, CO Gas Production and Internal Pressure under Different Neutron Flux

    图  3  间隙包覆层尺寸随中子注量变化曲线

    Figure  3.  Dimensional Variation of Gap and Coated Layer Size with Neutron Flux

    图  4  中子注量为1.8×1026 m−2时不同残余气孔尺寸TRISO颗粒环向应力云图

    Figure  4.  Contour Plots for Hoop Stress of TRISO Particle with Different Residual Pore Size When the Neutron Flux Reachs 1.8×1026 m−2       

    图  5  有无残余气孔SiC层最大环向应力变化曲线

    Figure  5.  Maximum Hoop Stress Curves of SiC Layer With and Without Residual Pores

    图  6  不同残余气孔尺寸对包覆层环向应力随中子注量变化曲线

    Figure  6.  Hoop Stress Ccurves of Cladding Layers with Neutron Flux under Different Residual Pore sizes

  • [1] POWERS J J, WIRTH B D. A review of TRISO fuel performance models[J]. Journal of Nuclear Materials, 2010, 405(1): 74-82. doi: 10.1016/j.jnucmat.2010.07.030
    [2] LIU R Z, LIU M L, CHANG J X, et al. An improved design of TRISO particle with porous SiC inner layer by fluidized bed-chemical vapor deposition[J]. Journal of Nuclear Materials, 2015, 467: 917-926. doi: 10.1016/j.jnucmat.2015.10.055
    [3] MILLER G K, PETTI D A, VARACALLE D J JR, et al. Statistical approach and benchmarking for modeling of multi-dimensional behavior in TRISO-coated fuel particles[J]. Journal of Nuclear Materials, 2003, 317(1): 69-82. doi: 10.1016/S0022-3115(02)01702-6
    [4] SNEAD L L, TERRANI K A, KATOH Y, et al. Stability of SiC-matrix microencapsulated fuel constituents at relevant LWR conditions[J]. Journal of Nuclear Materials, 2014, 448(1-3): 389-398. doi: 10.1016/j.jnucmat.2013.09.056
    [5] LIU M L, LIU B, SHAO Y L, et al. Optimization design of the coating furnace by 3-d simulation of spouted bed dynamics in the coater[J]. Nuclear Engineering and Design, 2014, 271: 68-72. doi: 10.1016/j.nucengdes.2013.11.012
    [6] COLLIN B P. Modeling and analysis of UN TRISO fuel for LWR application using the PARFUME code[J]. Journal of Nuclear Materials, 2014, 451(1-3): 65-77. doi: 10.1016/j.jnucmat.2014.03.032
    [7] CHUN J H, LIM S W, CHUNG B D. Safety evaluation of accident-tolerant FCM fueled core with SiC-coated zircalloy cladding for design-basis-accidents and beyond DBAs[J]. Nuclear Engineering and Design, 2015, 289: 287-295. doi: 10.1016/j.nucengdes.2015.04.021
    [8] KAMALPOUR S, SALEHI A A, KHALAFI H, et al. The potential impact of Fully Ceramic Microencapsulated (FCM) fuel on thermal hydraulic performance of SMART reactor[J]. Nuclear Engineering and Design, 2018, 339: 39-52. doi: 10.1016/j.nucengdes.2018.08.029
    [9] TERRANI K A, KIGGANS J Q, KATOH Y, et al. Fabrication and characterization of fully ceramic microencapsulated fuels[J]. Journal of Nuclear Materials, 2012, 426(1-3): 268-276.
    [10] HALES J D, WILLIAMSON R L, NOVASCONE S R, et al. Multidimensional multiphysics simulation of TRISO particle fuel[J]. Journal of Nuclear Materials, 2013, 443(1-3): 531-543. doi: 10.1016/j.jnucmat.2013.07.070
    [11] 辛勇,李垣明,唐昌兵,等. 金属基弥散微封装燃料中TRISO燃料颗粒的尺寸优化设计[J]. 核动力工程,2019, 40(2): 176-179.
    [12] 刘仕超,周毅,李垣明,等. 多物理场耦合TRISO颗粒堆内行为研究[J]. 原子能科学技术,2022, 56(S1): 100-108.
    [13] DEMANGE P, MARIAN J, CARO M, et al. TRISO-fuel element thermo-mechanical performance modeling for the hybrid LIFE engine with Pu fuel blanket[J]. Journal of Nuclear Materials, 2010, 405(2): 144-155. doi: 10.1016/j.jnucmat.2010.08.004
    [14] 李伟,武小莉,刘仕超,等. UN核芯TRISO包覆燃料颗粒性能分析[J]. 原子能科学技术,2018, 52(2): 283-289.
  • 加载中
图(6)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  22
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-19
  • 修回日期:  2023-03-14
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回