高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小型一体化铅铋冷却反应堆仿真模型研究

孙原理 宋志浩 吕襄波

孙原理, 宋志浩, 吕襄波. 小型一体化铅铋冷却反应堆仿真模型研究[J]. 核动力工程, 2023, 44(6): 193-198. doi: 10.13832/j.jnpe.2023.06.0193
引用本文: 孙原理, 宋志浩, 吕襄波. 小型一体化铅铋冷却反应堆仿真模型研究[J]. 核动力工程, 2023, 44(6): 193-198. doi: 10.13832/j.jnpe.2023.06.0193
Sun Yuanli, Song Zhihao, Lyu Xiangbo. Research on Simulation Model of Small Integrated Lead-Bismuth Cooled Reactor[J]. Nuclear Power Engineering, 2023, 44(6): 193-198. doi: 10.13832/j.jnpe.2023.06.0193
Citation: Sun Yuanli, Song Zhihao, Lyu Xiangbo. Research on Simulation Model of Small Integrated Lead-Bismuth Cooled Reactor[J]. Nuclear Power Engineering, 2023, 44(6): 193-198. doi: 10.13832/j.jnpe.2023.06.0193

小型一体化铅铋冷却反应堆仿真模型研究

doi: 10.13832/j.jnpe.2023.06.0193
详细信息
    作者简介:

    孙原理(1983—),男,博士研究生,现主要从事核动力装置论证评估研究,E-mail: syl850122@126.com

  • 中图分类号: TL364

Research on Simulation Model of Small Integrated Lead-Bismuth Cooled Reactor

  • 摘要: 铅铋冷却反应堆在安全性、设计简化、防扩散和经济性方面具有巨大的潜力。本文以一体化小型铅铋冷却反应堆为研究对象,建立了基于四方程漂移流模型的螺旋管直流蒸汽发生器二次侧模型、一回路主冷却系统模型、本构模型和比例-积分-微分(PID)控制模型,开展了铅铋冷却反应堆运行控制特性研究。结果表明,稳态计算结果与设计值符合较好,模型能够准确模拟铅铋冷却反应堆的运行特性;快速变负荷运行工况下系统参数超调较小,能够实现反应堆功率跟随蒸汽流量的快速变化;传热管堵塞对反应堆运行有较大的影响,每堵塞1根传热管,蒸汽流量降低约6.7%。

     

  • 图  1  变负荷工况下的系统参数变化

    Figure  1.  System Parameters Change under Variable Load Condition

    图  2  传热管堵塞事故工况瞬态过程

    Figure  2.  Transient Process of Heat Transfer Tube Blockage Accident Condition

    表  1  对流换热系数的关联式

    Table  1.   Relation of Convective Heat Transfer Coefficient

    工况 传热关系式
    堆芯 Mikityuk[13]
    螺旋管直流蒸汽发生器 壳侧 单相区对流 Cheng[14]
    管侧[15] 单相区层流 Schmiat
    单相区紊流 Mori-Nakayma
    欠热沸腾起始点 Saha-Zuber
    饱和沸腾区 Chen
    干涸点 Kozeki
    膜态沸腾区 Miropolskiy
    下载: 导出CSV

    表  2  摩擦阻力系数关系式

    Table  2.   Relation of Friction Resistance Coefficient

    工况 阻力关系式
    圆管 层流 $f = \dfrac{{64}}{{Re}}$
    过渡区 0.027
    紊流 McAdams[16]
    棒束 单相流 Cheng-Todreas[17]
    管束[15] 管侧单相流 Ito
    管侧两相流 Ricotti
    壳侧 Subbotin
    下载: 导出CSV

    表  3  满负荷工况下程序计算值与设计参数的比较

    Table  3.   Comparison between Code Calculation Values and Design Parameters under Full Load Condition

    参数 设计值 程序计算值 相对误差/%
    堆芯功率/MW 1.500 1.498 0.13
    冷却剂流量/(kg·s−1) 207.70 207.71 0.0048
    堆芯入口温度/℃ 300.00 300.04 0.013
    堆芯出口温度/℃ 350.00 349.97 0.0086
    蒸汽流量/(kg·s−1) 7.270 7.273 0.04
    蒸汽温度/℃ 300.0 299.6 0.13
    二次侧压降/MPa 0.160 0.157 1.9
    稳压器液位/mm 65.00 64.82 0.28
    下载: 导出CSV
  • [1] ZRODNIKOV A V, TOSHINSKY G I, KOMLEV O G, et al. Nuclear power development in market conditions with use of multi-purpose modular fast reactors SVBR-75/100[J]. Nuclear Engineering and Design, 2006, 236(14-16): 1490-1502. doi: 10.1016/j.nucengdes.2006.04.005
    [2] GREENSPAN E, HONG S G, LEE K B, et al. Innovations in the ENHS reactor design and fuel cycle[J]. Progress in Nuclear Energy, 2008, 50(2-6): 129-139. doi: 10.1016/j.pnucene.2007.10.022
    [3] TAKAHASHI M, UCHIDA S, HATA K, et al. Pb-Bi-cooled direct contact boiling water small reactor[J]. Progress in Nuclear Energy, 2005, 47(1-4): 190-201. doi: 10.1016/j.pnucene.2005.05.020
    [4] CHOI S, HWANG I S, CHO J H, et al. URANUS: Korean lead-bismuth cooled small modular fast reactor activities[C]//ASME 2011 Small Modular Reactors Symposium. Washington: ASME, 2011: 107-112.
    [5] WU Y C. Design and R&D progress of china lead-based reactor for ADS research facility[J]. Engineering, 2016, 2(1): 124-131. doi: 10.1016/J.ENG.2016.01.023
    [6] GUO C, ZHAO P C, DENG J, et al. Safety analysis of small modular natural circulation lead-cooled fast reactor SNCLFR-100 under unprotected transient[J]. Frontiers in Energy Research, 2021, 9: 678939. doi: 10.3389/fenrg.2021.678939
    [7] SUVDANTSETSEG E. Neutronics and transient analysis of a small fast reactor cooled with natural circulation of lead: ELECTRA: European lead cooled training reactor[D]. Stockholm: KTH Royal Institute of Technology, 2014.
    [8] YAN M Y, SEKIMOTO H. Safety analysis of small long life CANDLE fast reactor[J]. Annals of Nuclear Energy, 2008, 35(5): 813-828. doi: 10.1016/j.anucene.2007.09.009
    [9] WEI S Y, MA W M, WANG C L, et al. Development and validation of transient thermal-hydraulic evaluation code for a lead-based fast reactor[J]. International Journal of Energy Research, 2021, 45(8): 12215-12233. doi: 10.1002/er.6334
    [10] YANG Y P, WANG C L, ZHANG D L, et al. Numerical analysis of liquid metal helical coil once-through tube steam generator[J]. Annals of Nuclear Energy, 2022, 167: 108860. doi: 10.1016/j.anucene.2021.108860
    [11] HERNANDEZ C R, GRISHCHENKO D, KUDINOV P, et al. Development of a CFD-based model to simulate loss of flow transients in a small lead-cooled reactor[J]. Nuclear Engineering and Design, 2022, 392: 111773. doi: 10.1016/j.nucengdes.2022.111773
    [12] FAZIO C. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies[R]. Paris: OECD, 2015.
    [13] MIKITYUK K. Heat transfer to liquid metal: Review of data and correlations for tube bundles[J]. Nuclear Engineering and Design, 2009, 239(4): 680-687. doi: 10.1016/j.nucengdes.2008.12.014
    [14] CHENG X, BATTA A, CHEN H Y, et al. Turbulent heat transfer to heavy liquid metals in circular tubes[C]//ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. Charlotte: ASME, 2004: 115-125.
    [15] XIA G L, YUAN Y, PENG M J, et al. Numerical studies of a helical coil once-through steam generator[J]. Annals of Nuclear Energy, 2017, 109: 52-60. doi: 10.1016/j.anucene.2017.05.025
    [16] 李精精,周涛,刘梦影,等. 铅铋与水自然循环流动传热比较分析[J]. 核科学与工程,2014, 34(2): 249-256.
    [17] CHENG S K, TODREAS N E. Hydrodynamic models and correlations for bare and wire-wrapped hexagonal rod bundles—Bundle friction factors, subchannel friction factors and mixing parameters[J]. Nuclear Engineering and Design, 1986, 92(2): 227-251. doi: 10.1016/0029-5493(86)90249-9
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  157
  • HTML全文浏览量:  24
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-09
  • 修回日期:  2023-05-08
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回