Analysis of Load-following Operation Capability of Large Sodium-cooled Fast Reactor
-
摘要: 为了研究国内某大型钠冷快堆的负荷跟踪运行能力,基于MATLAB/Simulink平台,建立了该钠冷快堆全系统仿真模型,在负荷阶跃且无控制系统介入的极端情况下,分层次考验快堆一、二、三回路系统的负荷跟踪能力。仿真结果表明,该快堆系统的一、二回路能够承受±10%的负荷阶跃,而三回路的负荷跟踪能力不能满足这一指标。在目前工艺设计和关键参数限值条件下,该大型钠冷快堆的负荷跟踪运行能力较差,无法承受±10%的负荷阶跃,在90%额定功率(Pn)功率水平运行时,最多能承受2.9%的负荷阶跃上升,且其采用的直管式直流蒸汽发生器(OTSG)是主要限制因素。
-
关键词:
- 钠冷快堆 /
- 负荷跟踪 /
- 直流蒸汽发生器(OTSG) /
- 仿真 /
- Simulink
Abstract: In order to study the load-following capability of a large sodium-cooled fast reactor in China, a simulation model of the whole system of this sodium-cooled fast reactor is established based on MATLAB/Simulink platform, and the load-following capability of the primary, second and third loops of the fast reactor system is tested in different levels under the extreme condition of load step and no control system intervention. The simulation results show that the primary and second loops of the fast reactor system can withstand ±10% of the load step, while the load-following capability of the third loop cannot meet this requirement. Under the current process design and key parameter limit conditions, this large sodium-cooled fast reactor has a poor load-following operation capability, and it cannot withstand a 10% load step. When operating at 90%Pn power level, it can withstand a 2.9% load step increase at most, and its once-through steam generator(OTSG) is the main limiting factor.-
Key words:
- Sodium-cooled fast reactor /
- Load-following /
- Once-through steam generator(OTSG) /
- Simulation /
- Simulink
-
图 1 再热凝气式汽轮机模型
$ {T_{{{\rm{CH}}}}} $—高压汽室蒸汽容积时间;s—拉普拉斯变换自变量;$ {T_{{{\rm{RH}}}}} $—再热蒸汽容积时间;$ {F_{{{\rm{HP}}}}} $—高压缸功率系数;Σ—求和;$ {F_{{{\rm{ILP}}}}} $ —中低压缸功率系数($ {F_{{{\rm{HP}}}}} $+$ {F_{{{\rm{ILP}}}}} $= 1);$ {P_{{{\rm{GV}}}}} $—进入汽轮机的蒸汽流量;$ {P_{{\rm{M}}}} $—汽轮机转子的机械功率输出。
Figure 1. Model of Reheat Condensing Turbine
-
[1] 张小冬,刘琳. AP1000反应堆控制系统特点分析[J]. 核动力工程,2011,32(4):62-65. [2] 张玮瑛,段天英,刘勇,等. 中国实验快堆负荷跟踪能力分析[J]. 原子能科学技术,2017,51(11):2028-2035. doi: 10.7538/yzk.2017.51.11.2028 [3] 王平,傅龙舟,朱继洲. 钠冷快堆主回路系统的建模及动态仿真[J]. 核科学与工程,1992,12(2):116-126. [4] BRUENS N W S, BRUKX J F L M, LATZKO D G H, et al. Modeling of nuclear steam generator dynamics[C]. USA: Proceedings of the 2nd Power Plant Dynamics, Control and Testing Symposium. Knoxville, Tennessee, 1975. [5] WALSH J M, KESAVAN K. Hybrid computer model of the prototype large breeder reactor plant and control system[C]. USA: Proceedings of the 3rd Power Plant Dynamics, Control, and Testing Symposium. Knoxville, 1977. [6] 杨世铭,陶文铨. 传热学[M]. 第三版. 北京:高等教育出版社,1998:159-164. [7] 徐济鋆. 沸腾传热和气液两相流[M]. 北京:中国原子能出版社,2001:100-105,278-320. [8] 于平安. 核反应堆热工分析[M]. 北京:中国原子能出版社,1981:83-92. [9] IEEE Committee Report. Dynamic models for steam and hydro turbines in power system studies[J]. IEEE Transactions on Power Apparatus and Systems, 1973, PAS-92(6): 1904-1915. doi: 10.1109/TPAS.1973.293570