Research on Mobile Emergency Cooling System for Spent Fuel Pool in Nuclear Power Plant
-
摘要: 为应对类似于福岛核电厂4号机组事故后乏燃料水池安全排热问题,通过分析该类事故下现场无电源可用、冷链丧失、应急时间紧急等特点,研究出一套可用于核电厂乏燃料水池的移动式应急冷却系统。该系统将主要设备集中布置在同一移动平台上,形成一个集成的移动式应急冷却装置,该装置自带动力源,冷却设备直接向大气环境排热,具备动力自给和独立热阱功能;该装置采用冷却功能模块化设计,装置内各设备已固定连接,事故后通过软管与预先铺设的乏燃料水池引水、回水管线连接即可,可在事故后快速投运,稳定导出乏燃料水池中的衰变热;此外,通过对移动式应急冷却装置外形尺寸标准化设计,满足厂内及厂外普通公路通行相关国家标准,可在本厂内不同机组间实行机动应急,也可以对其他厂址机组进行应急驰援。Abstract: In order to solve the issue of safe heat removal from the spent fuel pool after an accident similar to the Fukushima Daiichi Nuclear Power Plant Unit 4, a mobile emergency cooling system for the spent fuel pool in nuclear power plants has been developed by analyzing the characteristics of no power supply available on site, loss of cold chain, and emergency response time. The main equipment is centralized on the same mobile platform in the system, forming an integrated mobile emergency cooling device. The device comes with its own power source and cooling equipment that directly discharges heat into the atmosphere, with power self-sufficiency and a separate heat sink function. The device implements the modular design of cooling function, and each equipment in the device is fixedly connected. After an accident, it can be connected with the pre-laid water supply and return pipelines of the spent fuel pool through a hose. It can be quickly put into operation after an accident, and stably export the decay heat in the spent fuel pool. In addition, through the standardized design of the external dimensions of the mobile emergency cooling device, it can meet the relevant national standards for ordinary highway traffic inside and outside the plant. It can carry out mobile emergency response among different units in the plant, and can also carry out emergency rescue for units at other sites.
-
Key words:
- Nuclear power plant /
- Spent fuel pool /
- Severe accident /
- Emergency cooling /
- Mobile /
- Modularization
-
表 1 乏燃料水池移动式应急冷却系统冷却能力要求
Table 1. Cooling Capacity Requirements for Mobile Spent Fuel Pool Emergency Cooling System
核电机组运行工况 乏燃料水池最大
热负荷/MW工况一(电厂功率运行期间) 3.93 工况二(正常大修卸料工况下场外应急阶段) 9.27 工况三(正常大修卸料工况下场内应急阶段) 10.79 表 2 冷却塔容量设计
Table 2. Cooling Tower Capacity Design
类别 参数名 参数值 设计参数 干球温度/℃ 33.5 湿球温度/℃ 28.3 大气压力/kPa 100.27 热测流量/(m3·h−1) 165 热测进塔水温/℃ 70 热测出塔水温/℃ 49 冷侧喷淋水流量/(m3·h−1) 140 设计进风量/(m3·h−1) 156563 盘管参数 导热系数/ [W·(m−1·℃−1)] 16 换热管外径/m 0.019 水平管间距/m 0.045 垂直管间距/m 0.038 每流程管层数/层 2 盘管总层数/层 16 计算值 塔长(塔体内长)/m 4.42 塔宽(塔体内宽)/m 2.92 换热器长/m 4.325 换热器宽/m 2.787 每排管数/根 62 换热器高度/m 0.589 散热量/MW 3.95 设计换热管面积/m2 256.081 表 3 系统运行模式
Table 3. System Operation Mode
核电机组运行工况 投运列数 工况一(电厂功率运行期间) 1 工况二( 正常大修卸料工况下场外应急阶段) 3 工况三( 正常大修卸料工况下场内应急阶段) 3 -
[1] 陈海英,刘圆圆,张春明,等. 福岛乏燃料水池事故探讨[J]. 核安全,2012(2): 76-78. [2] 伍浩松,戴定,李颖涵,等. 日本福岛核事故十周年回顾[J]. 国外核新闻,2021(3): 20-22. [3] 邱志超,刘宏帅. 福岛核事故对核电安全设计的启示[J]. 科技视界,2020(9): 230-231. [4] 薛冰川. 日本核电的过去与未来−福岛核事故的影响及对我国的启示[J]. 世界环境,2017(2): 49-51. [5] 左跃. 福岛核事故的公众沟通启示与思考[J]. 世界环境,2021(2): 56-59. [6] 姜庆寰,李明生. 福岛核事故的辐射剂量以及对公众成员的健康影响[J]. 中国医学装备,2017, 14(6): 137-140. [7] 国家核安全局. 福岛核事故后核电厂改进行动通用技术要求(试行): 国核安发[2012]98号[R]. 北京: 国家核安全局, 2012. [8] 柴国旱,杨志义,肖军,等. 福岛核事故后核安全改进行动及安全要求研究[J]. 原子能科学技术,2022, 56(3): 399-409. [9] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 汽车、挂车及汽车列车外廓尺寸、轴荷及质量限值: GB 1589—2016[S]. 北京: 中国标准出版社, 2016: 4-7. [10] 王之肖, 李盛杰, 胡剑, 等. 核电站乏燃料水池的移动式应急冷却装置: 中国, 201810270172.9[P]. 2020-11-10.