A More Widely Applicable Calculation Method for Coastdown of Reactor Coolant Pump
-
摘要: 采用成熟的RELAP数值计算模型研究了基于相似理论的惰转转速和惰转流量理论公式的适用范围,进而首次提出了一种适用范围更广的核主泵惰转计算方法。基于相似理论的惰转转速理论公式基本适用于初始动能比(ε)< 3时的工况;惰转流量理论公式适用于ε < 0.3时的工况。在 ε≥0.3时,惰转过程流量、转矩、扬程和ε特性偏离相似工况,导致惰转转速和惰转流量理论公式的假设前提不成立,故理论公式计算结果产生较大偏差。一般压水堆核电厂反应堆冷却剂回路、主泵试验台架的ε < 0.3,惰转转速和惰转流量理论公式均适用,计算误差总体上不超过10%,且惰转转速计算误差小于惰转流量计算误差。本文提出了用于 ε≥0.3情况的惰转流量理论公式修正公式,拓展了惰转理论公式的应用范围,可用于新型反应堆的研发。Abstract: The applicable range of coastdown speed and flow analytical formulae based on similarity theory was investigated by using mature RELAP numerical calculation model, and then a more widely applicable calculation method for Reactor Coolant Pump (RCP) coastdown calculation was first proposed. The analytical formula of coastdown speed based on similarity theory is basically applicable to the conditions when the initial kinetic energy ratio (ε) is less than 3, while the analytical flow coastdown formula applicability is limited to conditions for which ε is lower than 0.3. When ε ≥ 0.3, the characteristics of flow, torque, head and ε deviate from similar conditions, which leads to invalid assumption of coastdown formulae, resulting in large error in calculation results of the formulae. Both the speed and flow coastdown formulae are applicable to coastdown calculation of PWR Reactor Coolant System and RCP test loops, because their ε is normally below 0.3; the error of coastdown formulae are within 10% normally, and the calculated speed error is less than flow error. A correction method for coastdown flow formula with ε ≥ 0.3 is proposed in this paper, which extends the applicable range of coastdown flow formula and is applicable for new reactor development.low formula with ε beyond 0.3 was developed, which expands the applicable range of coastdown formula and is applicable for new reactor development.
-
Key words:
- Reactor coolant pump /
- Coastdown /
- Analytical formulae /
- Applicable range
-
表 1 分析工况主要参数汇总
Table 1. Summary of Calculated Conditions
参数 I Mf Σ(Li) Σ(LiAi) f ε 最小值 0.1 0 0.10 0.12 0 0.013 最大值 8 10 19.94 19.53 10000 8.350 Mf—摩擦转矩;Σ(Li)—回路管线长度;Σ(LiAi)—回路水装量;f—回路局部阻力 表 2 典型工况参数
Table 2. Parameters of Typical Conditions
工况 I Mf Σ(Li) Σ(LiAi) f ε a 0.50 1 1 1 10000 0.013 b 8.00 1 1 1 0 0.104 c 0.25 1 1 1 1 2.346 d 0.10 1 1 1 0 8.350 表 3 典型工况的理论公式和RELAP分析相对偏差
Table 3. Deviation between Analytical Formulae and RELAP for Typical Conditions
工况 ε 相对偏差/% q1s ω1s q1/2 ω1/2 a 0.013 4.55 0.19 8.00 2.49 b 0.104 −0.65 0.00 5.60 0.98 c 2.346 −15.92 −0.36 −32.71 −5.05 d 8.350 −32.54 −20.51 −67.17 −33.29 -
[1] 张森如. 主循环泵瞬态特性计算[J]. 核动力工程,1993,14(2):183-190. [2] 郭玉君,张金玲,秋穗正,等. 反应堆系统冷却剂泵流量特性计算模型[J]. 核科学与工程,1995,15(3):220-225. [3] 徐一鸣,徐士鸣. 核主泵惰转转速计算模型的比较[J]. 发电设备,2011,25(4):236-238. [4] ALATRASH Y, KANG H O, YOON H G, et al. Analysis of primary coolant flow coastdwon phenomena of Jordan research and traning reactor[C]//10th International Conference on Nuclear Thermal Hydraulics and Safety. Okinawa, Japan: Operation and Safety, 2014. [5] ALATRASH Y, KANG H O, YOON H G, et al. Experimental and analytical investigations of primary coolant pump coastdown phenomena for the Jordan Research and Training Reactor[J]. Nuclear Engineering and Design, 2015, 286: 60-66. doi: 10.1016/j.nucengdes.2015.01.018 [6] FARHADI K. Analysis of flow coastdown for an MTR-pool type research reactor[J]. Progress in Nuclear Energy, 2010, 52(6): 573-579. doi: 10.1016/j.pnucene.2010.01.004 [7] GAO H, GAO F, ZHAO X C, et al. Transient flow analysis in reactor coolant pump systems during flow coastdown period[J]. Nuclear Engineering and Design, 2011, 241(2): 509-514. doi: 10.1016/j.nucengdes.2010.09.033 [8] 钟云,周文霞,夏迪. 反应堆冷却剂泵惯量设计影响因素研究[J]. 原子能科学技术,2017,51(8):1430-1436. [9] 钟云,刘毅,周文霞,等. 主泵惰转特性分析与设计方法研究[J]. 核动力工程,2017,38(4):84-88. [10] 姜茂华,邹志超,王鹏飞,等. 基于额定参数的核主泵惰转工况计算模型[J]. 原子能科学技术,2014,48(8):1435-1439. [11] TAKADA Y, YOKOMURA T, KUROSAWA A. Thermo-hydraulic model test of the first nuclear ship reactor in Japan[J]. Nuclear Engineering and Design, 1969, 10(2): 126-147. doi: 10.1016/0029-5493(69)90036-3 [12] KALIATKA A, USPURAS E. Benchmark analysis of main circulation pump trip events at the Ignalina NPP using RELAP5 code[J]. Nuclear Engineering and Design, 2000, 202(1): 109-118. doi: 10.1016/S0029-5493(00)00283-1 [13] 张龙飞,张大发,王少明. 转动惯量对船用核动力主泵瞬态特性的影响研究[J]. 船海工程,2005(2):55-57. [14] 肖三平. 电网频率下降时CPR1000反应堆主泵和电机瞬态分析[J]. 核动力工程,2013,34(3):152-155. [15] 邹志超. 核主泵水力部件初步设计及惰转特性研究[D]. 杭州:浙江大学,2013.