Research on Key Technology of Fuel Rod Oxide Film Thickness Measurement System
-
摘要: 核反应堆燃料组件长期服役过程中,锆合金与高温水作用会产生氧化形成一层氧化膜,由于膜层较薄,测量精度需要达到±5 μm,测量精度的高要求为氧化膜厚度测量系统的研发带来难度。为此,本文在涡流提离效应的基础上研制了一套燃料棒氧化膜厚度测量系统,讨论了测量系统中的关键技术,同时对涡流提离效应的电磁场进行仿真。测试结果表明,该测量系统测量精度高、稳定可靠,可实现在役燃料棒氧化膜的厚度测量。Abstract: During the long-term service of nuclear reactor fuel assembly, zirconium alloy reacts with high-temperature water to form an oxide film. The measurement precision needs to reach ± 5μm due to the thin film. The high requirement of measurement precision brings difficulties to the development of the oxide film thickness measurement system. Therefore, based on the eddy current lift-off effect, a fuel rod oxide film thickness measurement system is developed in this paper. The key technology in the system is discussed, and the electromagnetic field of eddy current lift-off effect is simulated. The test results show that the measurement system has high precision, stability and reliability, and can measure the thickness of oxide film of in-service fuel rods.
-
Key words:
- Eddy current /
- Oxide film /
- Measurement system
-
表 1 氧化膜厚度的测量值与实际值对比
Table 1. Comparison of Measured and Actual Oxide Film Thicknesses
编号 采样点 实际厚度/μm 测量厚度/μm 误差/μm 1 1558 9.5 10.53 1.03 2 2239 26.3 28.35 2.05 3 2713 49.5 51.51 2.01 4 3430 70.5 67.15 −3.35 5 4700 89.9 85.94 −3.96 -
[1] 许俊龙,马官兵,王贤彬,等. 核反应堆燃料组件的无损检测和修复[J]. 无损检测,2014,36(11):38-41. [2] 倪星河. 轻水堆燃料严重损伤实验的模拟和锆包壳氧化产氢及释氢模型的研究[D]. 厦门:厦门大学,2018. [3] 周邦新. 改善锆合金耐腐蚀性能的概述[J]. 金属热处理学报,1997,18(3):8-15. [4] 李磊豪,董冰,李晨悦,等. 燃料包壳破损条件下裂变气体释放模拟实验研究[J]. 核技术,2019,42(12):120601. [5] 钱进,郭一帆,王鑫,等. 破损燃料棒二次氢化行为观察与分析[J]. 原子能科学技术,2020,54(8):1487-1493. [6] 王华才,程焕林,郭丽娜,等. Zr-Nb合金包壳管氧化膜的微观结构[J]. 腐蚀与防护,2022,43(7):67-73,116. [7] XIAO X, GAO B, TIAN G Y, et al. Novel ultrasound system with intelligent compensation for high precision measurement of thin wall tube[J]. IEEE Sensors Journal, 2018, 18(16): 6633-6643. doi: 10.1109/JSEN.2018.2826547 [8] XIAO X, ZHOU G Z, WANG K Q, et al. Study on in-service inspection of nuclear fuel assembly failure using ultrasonic plate wave[J]. Sensors, 2022, 22(19): 7606. doi: 10.3390/s22197606 [9] 燕芳,王志春,丁东阳. 电涡流测厚系统特征值提取方法[J]. 传感器与微系统,2019,38(7):18-20. [10] 程曦,周国正,唐西明,等. 基于涡流技术的燃料棒氧化膜测量信号有效性评估与统计[J]. 核动力工程,2020,41(1):49-53. [11] 罗曼. 压水堆乏燃料元件包壳表面氧化膜厚度测量技术研究[J]. 科技资讯,2021,19(9):63-65,70. [12] SETHURAMAN A, ROSE J H. Rapid inversion of eddy current data for conductivity and thickness of metal coatings[J]. Journal of Nondestructive Evaluation, 1995, 14(1): 39-46. doi: 10.1007/BF00735670 [13] 任亮,李国云,江林志,等. 压水堆燃料组件池边检查技术研究进展[J]. 科技导报,2015,33(18):91-95. [14] FERNÁNDEZ J R, GUERRA J. Fuel rod inspection system, SICOM-ROD[C]. Hungary: Proceedings of the 6th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components. Budapest: NDT, 2007: 810. [15] 陈波,李映辉,李翔宇. 关于伽辽金法的一点注记[J]. 力学与实践,2022,44(2):393-396.