Study on Off-design Operating Characteristics of Cold-end System for SCO2 Cycle Matching Fluoride-salt-cooled High-temperature Small Reactor
-
摘要: 高温氟盐堆与超临界二氧化碳(SCO2)布雷顿循环耦合的小型发电系统具有高效、紧凑和高固有安全性而被认为在小型核动力/核发电领域具有良好发展前景。本文针对高温氟盐堆与SCO2布雷顿循环的耦合系统开展了系统优化设计与变工况运行特性研究。基于高温氟盐堆热端特征和冷端环境条件设计和对比了多种循环构型下的系统性能,发现对于2种反应堆循环回路系统,采用再压缩循环在循环热效率和紧凑性综合方面具有优势,在此基础上研究了冷端系统SCO2布雷顿循环系统变工况运行特性,发现当主压缩入口温度改变时,采用定压比运行模式不仅循环效率高,且对冷端环境温度变化适应性范围也大。因此当环境温度变化时,布雷顿循环推荐采用定压比运行模式。Abstract: The small power generation system of supercritical carbon dioxide (SCO2) Brayton cycle coupled with fluoride-salt-cooled high-temperature small reactor is considered to have a good development prospect in the field of small nuclear power/nuclear power generation because of its high efficiency, compactness and high inherent safety. In this paper, the optimization design and off-design operation characteristics of cold-side for supercritical carbon dioxide Brayton cycle are studied. Based on the Fluoride-salt-cooled high-temperature small reactor characteristics and environment conditions, various SCO2 cycle configurations are compared, and it is found that the main compressor interstage cooling and reheat can improve thermal efficiency, but increase of limited, and extra heat exchangers are added. Then, the off-design operation characteristics of SCO2 cycle cold side system is investigated. The operation mode with constant pressure ratio not only has high cycle efficiency, but also has a wide adaptability range to the temperature change of the environment. Therefore, the constant pressure ratio operation mode is recommended for SCO2 cycle when the ambient temperature changes.
-
表 1 高温氟盐堆耦合SCO2布雷顿循环边界参数
Table 1. Boundary Parameters of SCO2 Brayton Cycle in Fluoride-salt-cooled High-temperature Small Reactor
参数 数值 参数 数值 一回路出口温度/℃ 700 一回路入口温度/℃ 600 循环最高温度/℃ 直接回路:680
间接回路:650热功率/MW 15 最小温差/℃ 5 热端最小端差/℃ 20 压缩机等熵效率/% 85 透平等熵效率/% 90 透平入口压力/MPa 25 最小夹点温差/℃ 3 换热器热侧压损/kPa 50 换热器水侧压损/kPa 100 表 2 计算模型验证
Table 2. Model Validation
参数 设计工况 变工况 本模型 文献[18] 本模型 文献[18] 循环效率/% 44.62 44.67 40.50 40.46 循环吸热量/MW 10 10 5.22 5.22 循环工质流量/(kg·s−1) 51.76 51.76 35.8 35.9 分流比 0.3 0.3 0.3 0.3 循环压比 2.78 2.78 2.10 2.10 最低温度/℃ 41 41 50 50 最高温度/℃ 550 550 550 550 -
[1] 周杰,韩伟实. 中、小型核动力应用前瞻[J]. 中国科技信息,2007(1): 244-245,247. doi: 10.3969/j.issn.1001-8972.2007.01.136 [2] 杨军,张恩昊,郭志恒,等. 全球核能科技前沿综述[J]. 科技导报,2020, 38(20): 35-49. doi: 10.3981/j.issn.1000-7857.2020.20.010 [3] LATURKAR K, LATURKAR K. Advances in very small modular nuclear reactors[J]. Chemical Engineering Progress, 2022, 118(4): 44-51. [4] GREENE S, GEHIN J, HOLCOMB D, et al. Pre-conceptual design of a fluoride-salt-cooled small modular advanced high temperature reactor (SmAHTR):ORNL/TM-2010/199[R]. Oak Ridge: Oak Ridge National Laboratory, 2011. [5] MACDONALD R. Investigation and design of a secure, transportable fluoride-salt-cooled high-temperature reactor (TFHR) for isolated locations[D]. Cambridge: Massachusetts Institute of Technology, 2014. [6] DOSTAL V. A supercritical carbon dioxide cycle for next generation nuclear reactors[D]. Cambridge: Massachusetts Institute of Technology, 2004. [7] BRUN K, FRIEDMAN P, DENNIS R. Fundamentals and applications of supercritical carbon dioxide (sCO2) based power cycles[M]. Duxford: Woodhead Publishing, 2017: 32-35. [8] 谢永慧,王雨琦,张荻,等. 超临界二氧化碳布雷顿循环系统及透平机械研究进展[J]. 中国电机工程学报,2018, 38(24): 7276-7286. doi: 10.13334/j.0258-8013.pcsee.180264 [9] MOISSEYTSEV A, SIENICKI J J. Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor[J]. Nuclear Engineering and Design, 2009, 239(7): 1362-1371. doi: 10.1016/j.nucengdes.2009.03.017 [10] MOISSEYTSEV A, SIENICKI J J. Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor:ANL-06/27[R]. Argonne: Argonne National Laboratory, 2007. [11] 杨红义,杨晓燕,张东旭,等. 基于超临界二氧化碳动力转换系统的革新型钠冷快堆关键技术研究[J]. 中国科学:技术科学,2021, 51(3): 324-340. [12] 黄彦平,王俊峰. 超临界二氧化碳在核反应堆系统中的应用[J]. 核动力工程,2012, 33(3): 21-27. doi: 10.3969/j.issn.0258-0926.2012.03.005 [13] 石明珠. 核动力船舰超临界二氧化碳循环系统建模及性能分析[D]. 南京: 东南大学, 2020. [14] AHN Y, BAE S J, KIM M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. doi: 10.1016/j.net.2015.06.009 [15] CRESPI F, GAVAGNIN G, SÁNCHEZ D, et al. Supercritical carbon dioxide cycles for power generation: A review[J]. Applied Energy, 2017, 195: 152-183. doi: 10.1016/j.apenergy.2017.02.048 [16] 吴新汶,邵应娟,钟文琪. 600MW煤基超临界二氧化碳循环PCHE预冷器设计及传热特性研究[J]. 中国电机工程学报,2023, 43(15): 5916-5925. [17] COOKE D H. Modeling of off-design multistage turbine pressures by stodola’s ellipse[C]. Energy Incorporated PEPSE User’s Group Meeting, Richmond, VA, 1983: 2-3 [18] DYREBY J J. Modeling the supercritical carbon dioxide Brayton cycle with recompression[D]. Madison: University of Wisconsin, 2014. [19] MA Y G, MOROSUK T, LIU M, et al. Investigation of off-design characteristics of an improved recompression supercritical carbon dioxide cycle for concentrated solar power application[J]. International Journal of Energy Research, 2021, 45(2): 1818-1835. doi: 10.1002/er.5857 [20] 王雪,孙恩慧,徐进良,等. 超临界二氧化碳循环关键部件成本模型研究进展[J]. 中国电机工程学报,2022, 42(2): 650-662.