Study on Loading Pattern for Long-cycle Lead-cooled Fast Reactor Core
-
摘要: 铅冷快堆具有系统简单、自然安全的特点,是最具发展潜力与现实性的四代核电堆型之一。由于铅冷却剂具有密度大、运行温度高、不透明等特性,导致铅冷快堆倒换料技术难度大、过程复杂且耗时,影响核电厂的经济性和安全性,因而增加循环长度、减少倒换料次数,成为大型商用铅冷快堆设计研究的重要内容。本文从工程需求出发分析了核燃料类型、燃料元件及组件形式、反射层材料、控制棒布置方式、易裂变核素再生区设置方法等因素对铅冷快堆循环长度的影响规律,建立铅冷快堆长循环堆芯装载方法,为大型商用铅冷快堆堆芯物理设计优化提供参考。Abstract: Lead-cooled fast reactor system is simple with natural safety, and it is one of the Generation Ⅳ nuclear power reactors with the most development potential and reality. Due to the high density, high operating temperature and opacity of lead coolant, the core refueling process is very difficult, complex and time-consuming, which affects the economy and safety of nuclear power plants. Therefor, increasing the core cycle length and reducing the refueling frequency have become an important aspect of the design and research of large-scale commercial lead-cooled fast reactor. Based on the engineering requirements, this paper analyzes the influence laws of the factors such as nuclear fuel type, fuel element and assembly form, reflector material, control rod layout, and the setting method of fissile nuclides blanket zone on the cycle length of lead-cooled fast reactor, and establishes the loading method of long-cycle core of lead-cooled fast reactor, which provides reference for the optimization of physical design of large commercial lead-cooled fast reactor.
-
Key words:
- Lead-cooled fast reactor /
- Generation Ⅳ nuclear reactor /
- Long cycle /
- Physical design
-
表 1 铅冷快堆堆芯主要参数
Table 1. Key Parameters of the Lead-cooled Fast Reactor Core
参数名 数值或描述 热功率/MW 1500 堆芯入口温度/℃ 420 堆芯出口温度/℃ 540 系统流量/(t·s−1) 84 冷却剂流速/(m·s−1) ≤2.0 燃料元件类型 棒元件 燃料组件形式 正方形 核燃料 U-20%Pu-10%Zr 换料周期/a ≥10 -
[1] CINOTTI L, SMITH C F, SEKIMOTO H. Lead-cooled fast reactor (LFR) overview and perspectives: LLNL-CONF-414708[R]. Livermore: Lawrence Livermore National Laboratory, 2009. [2] CINOTTI L, SMITH C F, ARTIOLI C, et al. Lead-cooled fast reactor (LFR) design: safety, neutronics, thermal hydraulics, structural mechanics, fuel, core, and plant design[M]. New York: Springer, 2010: 2749-2840. [3] 肖宏才. 自然安全的BREST铅冷快堆——现代核能体系中最具发展潜力的堆型[J]. 核科学与工程,2015,35(3):395-406. doi: 10.3969/j.issn.0258-0918.2015.03.001 [4] TOSHINSKY G I, DEDUL A V, KOMLEV O G, et al. Lead-bismuth and lead as coolants for fast reactors[J]. World Journal of Nuclear Science and Technology, 2020, 10(2): 65-75. doi: 10.4236/wjnst.2020.102007 [5] 戎利建,张玉妥,陆善平,等. 铅与铅铋共晶合金手册[M]. 北京:科学出版社,2014: 23-25. [6] GLAZOV A G, LEONOV V N, ORLOV V V, et al. Brest reactor and plant-site nuclear fuel cycle[J]. Atomic Energy, 2007, 103(1): 501-508. doi: 10.1007/s10512-007-0080-5 [7] HONG S G, HYUN H, YOU W. Ultra-long-life fast reactor cores having axial blanket-driver-blanket Burnup strategy with thorium and PWR spent fuels[J]. Transactions of the American Nuclear Society, 2016, 115: 1321-1323. [8] JUÁREZ-MARTÍNEZ L C, FRANÇOIS J L. Study on the use of thorium in a lead-cooled fast reactor[J]. Transactions of the American Nuclear Society, 2017, 117: 1273-1277. [9] CINOTTI L, GRASSO G, AGOSTINI P. Flexibility of the LFR: an ASSET for novel, affordable LFR-AS-200-based SMRs[J]. Transactions of the American Nuclear Society, 2017, 117: 1464-1467. [10] BAI M Q, LINDLEY B A, ABRAM T. Fuel options for nuclear ship reactors featuring reactivity swing below one dollar[J]. Nuclear Engineering and Design, 2020, 360: 110494. doi: 10.1016/j.nucengdes.2019.110494 [11] ALEMBERTI A, CARLSSON J, MALAMBU E, et al. European lead fast reactor—ELSY[J]. Nuclear Engineering and Design, 2011, 241(9): 3470-3480. doi: 10.1016/j.nucengdes.2011.03.029 [12] 刘紫静,赵鹏程,任广益,等. 长寿命小型自然循环铅基快堆燃料选型[J]. 原子能科学技术,2020,54(5):944-953. doi: 10.7538/yzk.2019.youxian.0402 [13] 胡赟,徐銤. 快堆金属燃料的发展[J]. 原子能科学技术,2008,42(9):810-815. [14] 郭奇勋,李宁. 快堆燃料循环与金属燃料[J]. 厦门大学学报(自然科学版),2015, 54(5): 593-602. [15] PORTER D L, CHICHESTER H J M, MEDVEDEV P G, et al. Performance of low smeared density sodium-cooled fast reactor metal fuel[J]. Journal of Nuclear Materials, 2015, 465: 464-470. doi: 10.1016/j.jnucmat.2015.06.014 [16] 张翔,潘小强,刘超红,等. U-Zr合金燃料与铅、铋及其合金静态相容性研究[J]. 核技术,2019,42(3):030603. doi: 10.11889/j.0253-3219.2019.hjs.42.030603 [17] ADAMOV E O, KAPLIENKO A V, ORLOV V V, et al. Brest lead-cooled fast reactor: from concept to technological implementation[J]. Atomic Energy, 2021, 129(4): 179-187. doi: 10.1007/s10512-021-00731-w [18] ZABUDKO L M, GRACHEV A F, ZHEREBTSOV A A, et al. Status on performance study of mixed nitride fuel pins of BREST reactor type[J]. Nuclear Engineering and Design, 2021, 384: 111430. doi: 10.1016/j.nucengdes.2021.111430 [19] 李泽华,徐銤. 快堆物理基础[M]. 武汉:长江文艺出版社,2011: 7-10. [20] SMIRNOV V S. Safety features of a power unit with the BREST-OD-300 reactor[C]//International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenario. Paris, France: IAEA, 2012. [21] MOISEEV A V. Pilot demonstration reactor BREST-OD-300: conceptual approaches and their implementation[C]//9th Joint IAEA-GIF Technical Meeting/Workshop on the Safety of Liquid Metal Cooled Fast Reactors. Vienna, Austria: IAEA, 2021. [22] 秦天骄,夏榜样,李晴,等. 铅冷行波堆反应性变化规律及其影响因素研究[J]. 核动力工程,2022,43(4):206-212. [23] HEJZLAR P, PETROSKI R, CHEATHAM J, et al. Terrapower, LLC traveling wave reactor development program overview[J]. Nuclear Engineering and Technology, 2013, 45(6): 731-744. doi: 10.5516/NET.02.2013.520 [24] WANG K, LI Z G, SHE D, et al. RMC – A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048