高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华龙一号反应堆假想事故下碎片床熔化过程的动态模拟研究

吕超 李根 严俊杰

吕超, 李根, 严俊杰. 华龙一号反应堆假想事故下碎片床熔化过程的动态模拟研究[J]. 核动力工程, 2023, 44(S1): 14-20. doi: 10.13832/j.jnpe.2023.S1.0014
引用本文: 吕超, 李根, 严俊杰. 华龙一号反应堆假想事故下碎片床熔化过程的动态模拟研究[J]. 核动力工程, 2023, 44(S1): 14-20. doi: 10.13832/j.jnpe.2023.S1.0014
Lyu Chao, Li Gen, Yan Junjie. Dynamic Simulation of Debris Bed Melting Process during the Hypothetical Severe Accident of HPR1000[J]. Nuclear Power Engineering, 2023, 44(S1): 14-20. doi: 10.13832/j.jnpe.2023.S1.0014
Citation: Lyu Chao, Li Gen, Yan Junjie. Dynamic Simulation of Debris Bed Melting Process during the Hypothetical Severe Accident of HPR1000[J]. Nuclear Power Engineering, 2023, 44(S1): 14-20. doi: 10.13832/j.jnpe.2023.S1.0014

华龙一号反应堆假想事故下碎片床熔化过程的动态模拟研究

doi: 10.13832/j.jnpe.2023.S1.0014
基金项目: 国家自然科学基金(11975180);国家重点研发计划项目(2019YFB1900704)
详细信息
    作者简介:

    吕 超(1998—),男,硕士研究生,现从事反应堆严重事故方向的研究,E-mail: 1135879510@qq.com

  • 中图分类号: TL334

Dynamic Simulation of Debris Bed Melting Process during the Hypothetical Severe Accident of HPR1000

  • 摘要: 在核反应堆严重事故后期,压力容器下封头内碎片床熔化对内部传热特性、壁面热流密度和壁面消熔都具有重要影响。本研究基于ANSYS Fluent软件,采用相变模型和大涡模拟(LES)湍流模型对华龙一号(HPR1000)反应堆假想事故下碎片床熔化的动态过程进行了研究,预测了熔池形成过程的温度分布、速度场及壁面消熔的变化规律。结果表明,碎片床熔化开始后,升温速率降低,并逐渐趋于稳定;熔池温度逐渐呈现中上部相对均匀、底部具有较大温度梯度的分布规律,并且随着衰变热功率的增加,熔池温度均匀分布区域向底部扩展;壁面热流密度低于相应位置外部冷却的临界热流密度(CHF);但是壁面仍然出现了消熔现象,消熔最早出现在壁面内侧靠近碎片床上表面的位置,并逐渐向下扩展,消熔区域范围和深度随停堆后碎片床干涸时间的缩短而增加。本文计算结果可为碎片床相变传热和压力容器完整性研究提供参考。

     

  • 图  1  熔池最大温度随时间变化对比图

    Figure  1.  Comparison of Variation of Maximum Molten Pool Temperature with Time

    图  2  计算域网格

    Figure  2.  Computational Geometry Meshing

    图  3  碎片床最大温度随时间的变化

    Figure  3.  Variation of Maximum Debris Bed Temperature with Time       

    图  4  不同时间下碎片床中心线温度分布

    Figure  4.  Centerline Temperature Distribution of Debris Bed at Different Time

    图  5  熔池速度流线图

    Figure  5.  Velocity Streamline Fields of Molten Pool

    图  6  碎片床和壁面液相率分布

    Figure  6.  Liquid Fraction Distribution for Debris Bed and Vessel Wall

    图  7  初始工况为停堆后不同时间的碎片床熔化过程中心温度变化规律(衰变热与散热达到平衡的工况点)

    Figure  7.  Variation of Centerline Temperature Profiles of Debris Bed for Initial Conditions at Different Time Since Reactor Shutdown (Point at Decay Heat Equals to Heat Rejected)

    图  8  初始工况为停堆后不同时间的碎片床熔化过程熔池速度流线图

    Figure  8.  Velocity Streamline Fields of Debris Bed for Initial Conditions at Different Time Since Reactor Shutdown

    图  9  初始工况为停堆后不同时间的碎片床熔化过程液相率云图

    Figure  9.  Liquid Fraction Contours of Debris Bed and Vessel for Initial Conditions at Different Time Since Reactor Shutdown

    图  10  初始工况为停堆后不同时间的碎片床熔化过程壁面热流密度与CHF变化规律

    Figure  10.  Variation of Angular Heat Flux and CHF Distributions Along the Vessel Wall for Initial Conditions at Different Time Since Reactor Shutdown

    表  1  模拟采用的碎片床物性参数

    Table  1.   Debris Bed Properties Employed in Simulation

    物性数值
    密度/ (kg·m−3)7858.27
    比热(固体碎片/液态熔融物)/ (J·kg−1·K−1)496.76/549.45
    导热系数(固体碎片/液态熔融物)/ (W·m−1·K−1)4.50/9.46
    熔融物热膨胀系数/K−10.007359
    固相线温度/K2319.6
    液相线温度/K2718.4
    下载: 导出CSV
  • [1] DINH T N, NOURGALIEV R R. Turbulence modelling for large volumetrically heated liquid pools[J]. Nuclear Engineering and Design, 1997, 169(1-3): 131-150. doi: 10.1016/S0029-5493(96)01281-2
    [2] NOURGALIEV R R, DINH T N, SEHGAL B R. Effect of fluid prandtl number on heat transfer characteristics in internally heated liquid pools with rayleigh numbers up to 1012[J]. Nuclear Engineering and Design, 1997, 169(1-3): 165-184. doi: 10.1016/S0029-5493(96)01282-4
    [3] AKSENOVA A E, CHUDANOV V V, PERVICHKO V A, et al. Development and application of the CONV codes[C]. Germany: Proceedings of RASPLAV Seminar 2000. Munich, 2000.
    [4] ZHANG L T, ZHOU Y K, LUO S M, et al. Large eddy simulation for the thermal behavior of one-layer and two-layer corium pool configurations in HPR1000 reactor[J]. Applied Thermal Engineering, 2018, 145: 38-47. doi: 10.1016/j.applthermaleng.2018.09.019
    [5] 王溪,孟召灿,程旭. 基于OpenFOAM的熔融池自然对流传热与凝固数值研究[J]. 原子能科学技术,2015, 49(8): 1393-1398. doi: 10.7538/yzk.2015.49.08.1393
    [6] GUBAIDULLIN A A, SEHGAL B R. Numerical analysis of natural convection and mixing in two-fluid stratified pools with internal heat sources[J]. Journal of Heat Transfer, 2004, 126(4): 600-610. doi: 10.1115/1.1777578
    [7] TRAN C T, KUDINOV P, DINH T N. An approach to numerical simulation and analysis of molten corium coolability in a boiling water reactor lower head[J]. Nuclear Engineering and Design, 2010, 240(9): 2148-2159. doi: 10.1016/j.nucengdes.2009.11.029
    [8] NICOLICI S, DUPLEAC D, PRISECARU I. Numerical analysis of debris melting phenomena during late phase CANDU 6 severe accident[J]. Nuclear Engineering and Design, 2013, 254: 272-279. doi: 10.1016/j.nucengdes.2012.09.023
    [9] VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. doi: 10.1016/0017-9310(87)90317-6
    [10] 朱大欢,邓纯锐,吴清,等. 华龙一号反应堆堆腔注水冷却系统设计与安全特性研究[J]. 核动力工程,2019, 40(S1): 32-36. doi: 10.13832/j.jnpe.2019.S1.0032
    [11] 杰姆斯·苏赛克. 传热学(下册)[M]. 俞佐平, 译. 北京: 人民教育出版社, 1981: 349.
    [12] CHURCHILL S W. Free convection around immersed bodies[M]//HEWITT G F. Heat Exchanger Design Handbook. New York: Begell House, 2002, 2: 1-55.
    [13] ESMAILI H, KHATIB-RAHBAR M. Analysis of in-vessel retention and ex-vessel fuel coolant interaction for AP1000[R]. Rockville: Energy Research, Inc. , 2004.
    [14] TRAN C T, VILLANUEVA W, KUDINOV P. A study on the integral effect of corium material properties on melt pool heat transfer in a boiling water reactor[C]//14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14). Toronto, 2011: 25-30
    [15] ZHANG L T, LUO S M, ZHANG Y P, et al. Large eddy simulation on turbulent heat transfer in reactor vessel lower head corium pools[J]. Annals of Nuclear Energy, 2018, 111: 293-302. doi: 10.1016/j.anucene.2017.08.055
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  34
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-15
  • 修回日期:  2023-04-13
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回