A Study on Safety Analysis of Heat Pipe Cooled Reactor Based on Unmanned Underwater Vehicle
-
摘要: 以一种无人潜航器中搭载的紧凑型热管冷却反应堆为基础,建立并优化了一套完整的热管冷却反应堆安全分析模型,其中主要包含堆芯功率瞬变模型、高温热管冷态启动模型与二维热管网格模型,针对研究对象设计了事故工况下的非能动余热排出系统。基于上述模型,开发了热管冷却反应堆安全分析程序,并采用文献公开的冷态启动、稳定运行的实验数据与安全分析程序计算数据进行了对比验证。验证结果表明,程序计算结果与实验数据符合较好,证明了程序的准确性与预测结果的可靠性。使用程序针对研究对象进行了典型事故分析,计算得到了热阱丧失事故下,反应堆在事故发生后延迟3 s停堆与延迟6 s投入余热排出系统条件下峰值温度为1085 K,低于热管最高运行温度;计算得到了引入阶跃正反应性0.47 $与线性引入反应性±0.05$下热管冷却反应堆温度的瞬态响应,最高温度低于热管最高运行温度,且在反馈调节作用下反应堆在更高功率水平下达到新的稳态,体现了反应堆设计方案的良好固有安全性。Abstract: Based on a compact heat pipe-cooled reactor carried by an unmanned underwater vehicle, a complete safety analysis model of heat pipe cooled reactor is established and optimized in this paper, which mainly includes core power transient model, cold start-up model of high temperature heat pipe and two-dimensional heat pipe grid model. The passive residual heat removal system under accident condition is also designed. A heat pipe-cooled reactor safety analysis program was developed based on the established model, and the program's calculated results were compared and verified with published experimental data of cold start-up and stable operation. The verification results showed good agreement between the program's calculated results and experimental data, demonstrating the accuracy of the program and the reliability of the predicted results. The typical accident of the research object was analyzed by using the program, and the highest temperature was calculated to be 1085K under the heat sink loss accident condition, with a delay of reactor shutdown for 3s and a delay in putting residual heat removal system into operation for 6s, and it's below the maximum operating temperature of the heat pipe. The transient response of the reactor temperature with a step-in positive reactivity insertion of 0.47$ and a linear reactivity insertion of ±0.05$ was also calculated, and the highest temperature was below the maximum operating temperature of the heat pipe. Under feedback regulation, the reactor reached a new steady state at a higher power level, demonstrating the good inherent safety of the reactor design scheme.
-
表 1 热管实验条件及工况
Table 1. Experimental Conditions and Working Conditions of Heat Pipe
Faghri Baohua Chai El-Genk 管壁材料 304L不锈钢 管壳管径/mm 25×2 管壁材料 紫铜 外径/mm 26.7 管壳材料 Cr17Ni14Mo2 外径/mm 19.1 壁厚/mm 2.15 热管总长度/mm 500 壁厚/mmm 0.6 蒸汽区直径/mm 21.5 蒸发段长度/mm 160 蒸汽区直径/mm 17.3 蒸发段长度/mm 502 绝热段长度/mm 40 蒸发段长度/mm 393 绝热段长度/mm 188 冷凝段长度/mm 300 绝热段长度/mm 47 冷凝段长度/mm 292 蒸气通道直径/mm 18 冷凝段长度/mm 170 环境温度/K 288 吸液芯厚度/mm 1.5 环境温度/K 295 丝网材料 304L不锈钢 丝网材料 Cr17Ni14Mo2 丝网材料 紫铜 工质 Na 工质 K 工质 水 -
[1] BOWMAN W J, HITCHCOCK J E. Transient, compressible heat-pipe vapor dynamics[C]//Proceedings of the ASME 1988 National Heat Transfer Conference. New York: American Society of Mechanical Engineers, 1988. [2] BOWMAN W J. Simulated heat-pipe vapor dynamics[D]. Wright-Patterson: Air Force Institute of Technology, 1987. [3] CAO Y D, FAGHRI A. Transient two-dimensional compressible analysis for high-temperature heat pipes with pulsed heat input[J]. Numerical Heat Transfer, Part A:Applications, 1991, 18(4): 483-502. doi: 10.1080/10407789008944804 [4] Peng Cheng, Hongbin Ma. A Mathematical Model of an Oscillating Heat Pipe[J]. Heat Transfer Engineering, 2011, 32(11): 1037-1046. [5] ZUO Z J, FAGHRI A. A network thermodynamic analysis of the heat pipe[J]. International Journal of Heat and Mass Transfer, 1998, 41(11): 1473-1484. doi: 10.1016/S0017-9310(97)00220-2 [6] 袁红球,胡大璞. 高次端点浮动法—解点堆中子动力学方程[J]. 核动力工程,1995, 16(2): 124-128. [7] EL-GENK M, TOURNIER J M. DynMo: dynamic simulation model for space reactor power systems[J]. AIP Conference Proceedings, 2005, 746(1): 1005-1020. [8] OCHTERBECK J M. Modeling of room-temperature heat pipe startup from the frozen state[J]. Journal of Thermophysics and Heat Transfer, 1997, 11(2): 165-172. doi: 10.2514/2.6248 [9] CAO Y, FAGHRI A. Closed-form analytical solutions of high-temperature heat pipe startup and frozen startup limitation[J]. Journal of Heat Transfer, 1992, 114(4): 1028-1035. doi: 10.1115/1.2911873 [10] BUSSE C A. Theory of the ultimate heat transfer limit of cylindrical heat pipes[J]. International Journal of Heat and Mass Transfer, 1973, 16(1): 169-186. doi: 10.1016/0017-9310(73)90260-3 [11] 陶文铨 . 数值传热学[M]. 2 版 . 西安: 西安交通大学出版 社, 2001: 86-88. [12] RAMU K, WEISMAN J. Transition flow boiling heat transfer to water in a vertical annulus[J]. Nuclear Engineering and Design, 1977, 40(2): 285-295. doi: 10.1016/0029-5493(77)90039-5 [13] FAGHRI A, BUCHKO M, CAO Y. A study of high-temperature heat pipes with multiple heat sources and sinks: part 1 - Experimental methodology and frozen startup profiles[J]. Journal of Heat Transfer, 1991, 113(4): 4(4): 1003-1009. [14] 柴宝华,杜开文,卫光仁,等. 钾热管稳态数值模拟分析[J]. 原子能科学技术,2010, 44(5): 553-557. [15] Tournier J M , El-Genk M S .A Transient Analysis of Water Heat Pipe[C]//ASME Winter Annual Meeting. New Orleans, Louisiana: American Society of Mechanical Engineers, 1993.