Investigation on Flow Field Characteristics of Rod Bundle Channel under Rolling Condition
-
摘要: 由于海洋条件下反应堆处于非稳态工况,会产生倾斜、摇摆、起伏等运动,这些运动将会在棒束通道中引入额外的惯性力场,对棒束通道中的流场会有额外的影响,因此有必要对摇摆条件下的棒束通道进行研究。本文基于粒子图像测速(PIV)技术开展了摇摆条件下节径比为1.326的棒束通道内流场分布特性研究。对比了相同流量条件下稳态工况与瞬态工况下流场分布差异,分析了同一加速度时棒束通道内不同位置的流场分布特征。实验结果表明:摇摆运动对棒束通道中部的影响较小,对通道两侧的影响较大。通道两侧的速度场呈现周期性波动,波形为反相。在流量较低的情况下会出现倒流现象,但定位格架此时对上游并未造成横向速度影响。研究表明摇摆运动引起的流场变化与脉动流引起的流场变化有较大差异,其中脉动流造成的速度场变化是均匀脉动的,而摇摆引起的速度场是在通道两侧呈现反相波动。
-
关键词:
- 棒束通道 /
- 摇摆条件 /
- 粒子图像测速(PIV) /
- 定位格架
Abstract: The reactor is in an unsteady state under ocean conditions, which will cause tilt, swing, undulation and other motions of the reactor. These motions will introduce additional inertial force fields in the rod bundle channel, bringing additional influence on the flow field in the rod bundle channel. Therefore, it is necessary to study the rod bundle channel under rolling conditions. In this paper, based on the particle image velocimetry (PIV) technology, the research on the flow field distribution characteristics of the rod bundle channel with a pitch-to-diameter ratio of 1.326 under rolling condition is carried out. The difference of flow field distribution between steady state and transient state under the same flow rate is compared, and the flow field distribution characteristics at different positions in the rod bundle channel under the same acceleration are analyzed. The experimental results show that the rolling motion has a small effect on the middle of the rod bundle channel, and has a greater impact on both sides of the channel. The velocity field on both sides of the channel fluctuates periodically, with an anti-phase wave. In the case of low flow, reverse flow phenomenon will occur, but the spacer grid has no effect on the lateral speed upstream. Studies have shown that the flow field change caused by rolling motion is quite different from that caused by pulsating flow, in which the velocity field change caused by pulsating flow is uniform and pulsating, while the velocity field caused by rolling presents anti-phase fluctuation on both sides of the channel.-
Key words:
- Rod bundle /
- Rolling condition /
- PIV /
- Spacer grid
-
-
[1] 陈仕龙. 带交混格架棒束流场的可视化实验研究[D]. 上海: 上海交通大学, 2018. [2] 祁沛垚,邓坚,谭思超,等. 基于PIV技术的低雷诺数下棒束通道流场研究[J]. 核动力工程,2021, 42(1): 18-22. [3] QI P Y, LI X, QIU F, et al. Application of particle image velocimetry measurement technique to study pulsating flow in a rod bundle channel[J]. Experimental Thermal and Fluid Science, 2020, 113: 110047. doi: 10.1016/j.expthermflusci.2020.110047 [4] 李兴,祁沛垚,谭思超,等. 脉动流下棒束通道内相位差及瞬态流场研究[J]. 原子能科学技术,2019, 53(8): 1402-1409. [5] YAN B H, YU L, YANG Y H. Heat transfer with laminar pulsating flow in a channel or tube in rolling motion[J]. International Journal of Thermal Sciences, 2010, 49(6): 1003-1009. doi: 10.1016/j.ijthermalsci.2010.01.011 [6] 王晓烈, 王建军, 朱智强, 等. 摇摆条件下棒束通道内单相流动阻力特性研究[C]//第十五届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室学术年会论文集. 荣成: 中国核学会, 2017: 530-537. [7] 朱智强. 典型海洋条件下棒束通道内流动阻力特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2019, doi: 10.27060/d.cnki.ghbcu.2019.001001. [8] CONNER M E, HASSAN Y A, DOMINGUEZ-ONTIVEROS E E. Hydraulic benchmark data for PWR mixing vane grid[J]. Nuclear Engineering and Design, 2013, 264: 97-102. doi: 10.1016/j.nucengdes.2012.12.001 [9] 程坤. 海洋条件下棒束通道内自然循环流动不稳定性研究[D]. 哈尔滨: 哈尔滨工程大学, 2019, doi: 10.27060/d.cnki.ghbcu.2019.000228.